9.若對(duì)任意x∈[-1,1],x3-3ax+a≥0恒成立,則實(shí)數(shù)a的取值范圍是$\left\{{\frac{1}{4}}\right\}$.

分析 求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)的符號(hào)判斷函數(shù)的單調(diào)性,求出函數(shù)的最小值,然后求解a的范圍.

解答 解:令f(x)=x3-3ax+a,x∈[-1,1],
f′(x)=3x2-3a,
當(dāng)a≤0時(shí),f′(x)=3x2-3a≥0,f(x)在區(qū)間[-1,1]單調(diào)增,
f(x)min=f(-1)=4a-1≥0,
解得$a≥\frac{1}{4}$與a≤0矛盾,故舍去;
當(dāng)a>0時(shí),f′(x)=3x2-3a=0,解得$x=±\sqrt{a}$,
①當(dāng)$\sqrt{a}<1$時(shí),f(x)在$[{-1,-\sqrt{a}}]$單調(diào)增,在$[{-\sqrt{a},\sqrt{a}}]$單調(diào)減,在$[{\sqrt{a},1}]$單調(diào)增,
f(x)在$x=\sqrt{a}$上取得極小值,
故不等式要成立只需滿足,f(-1)=4a-1≥0且$f({\sqrt{a}})=a-2a\sqrt{a}≥0$,
解得$a=\frac{1}{4}$.
①當(dāng)$\sqrt{a}>1$,即a>1時(shí),f(x)在[-1,1]單調(diào)減,f(x)min=f(1)=1-2a≥0,可得a$≤\frac{1}{2}$,舍去.
綜上a=$\frac{1}{4}$.
故答案為:$\left\{\frac{1}{4}\right\}$.

點(diǎn)評(píng) 本題考查函數(shù)的恒成立,函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的最值的求法,考查分類討論以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,若橢圓C兩焦點(diǎn)的極坐標(biāo)分別是$(\sqrt{2},0),(\sqrt{2},π)$,長(zhǎng)軸長(zhǎng)是4.
(I)求橢圓C的參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)$f(x)=sin(2x-\frac{π}{6})$,則該函數(shù)的最小正周期為π,f(x)在$[0,\frac{π}{2}]$的最小值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷售利潤(rùn)不超過(guò)20萬(wàn)元時(shí),按銷售利潤(rùn)的20%進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷售利潤(rùn)超過(guò)20萬(wàn)元時(shí),若超出部分為A萬(wàn)元,則超出部分按2log5(A+2)進(jìn)行獎(jiǎng)勵(lì),沒超出部分仍按銷售利潤(rùn)的20%進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金總額為y(單位:萬(wàn)元),銷售利潤(rùn)為x(單位:萬(wàn)元).
(1)寫出該公司激勵(lì)銷售人員獎(jiǎng)勵(lì)方案的函數(shù)表達(dá)式;
(2)如果業(yè)務(wù)員老張獲得8萬(wàn)元的獎(jiǎng)勵(lì),那么他的銷售利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.命題“?x∈R,x>sinx”的否定是?x∈R,x≤sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=$\sqrt{-3-x}$的定義域?yàn)榧螦.關(guān)于$x的不等式{({\frac{1}{2}})^{2x}}>{2^{-a-x}}(a為常數(shù))$的解集為B.
(1)求集合A和B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}為等差數(shù)列,a1=2,{an}的前n和為Sn,數(shù)列{bn}為等比數(shù)列,且a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+2+4對(duì)任意的n∈N*恒成立.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)是否存在非零整數(shù)λ,使不等式$λ(1-\frac{1}{a_1})(1-\frac{1}{a_2})…(1-\frac{1}{a_n})cos\frac{{{a_{n+1}}π}}{2}<\frac{1}{{\sqrt{{a_n}+1}}}$對(duì)一切n∈N*都成立?若存在,求出λ的值;若不存在,說(shuō)明理由.
(Ⅲ)各項(xiàng)均為正整數(shù)的無(wú)窮等差數(shù)列{cn},滿足c39=a1007,且存在正整數(shù)k,使c1,c39,ck成等比數(shù)列,若數(shù)列{cn}的公差為d,求d的所有可能取值之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若角α的終邊經(jīng)過(guò)點(diǎn)P(1,-2),則cosα=$\frac{{\sqrt{5}}}{5}$; tan2α=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,短軸的兩個(gè)端點(diǎn)分別為A,B,且|AB|=2,△ABF為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點(diǎn)M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為N;過(guò)點(diǎn)M作x軸的垂線,垂足為H,直線NH與橢圓C交于另一點(diǎn)J,若$\overrightarrow{HM}$•$\overrightarrow{HN}$=-$\frac{1}{2}$,試求以線段NJ為直徑的圓的方程;
(3)已知l1,l2是過(guò)點(diǎn)A的兩條互相垂直的直線,直線l1與圓O:x2+y2=4相交于P,Q兩點(diǎn),直線l2與橢圓C交于另一點(diǎn)R,求△PQR面積最大值時(shí),直線l2的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案