12.設(shè)P是△ABC外一點(diǎn),則使點(diǎn)P在此三角形所在平面內(nèi)的射影是△ABC的外心的條件為PA=PB=PC.

分析 由點(diǎn)P在此三角形所在平面內(nèi)的射影O是△ABC的外心,得AO=BO=CO,從而由射影定理得到使點(diǎn)P在此三角形所在平面內(nèi)的射影是△ABC的外心的條件.

解答 解:如圖,P是△ABC外一點(diǎn),
∵點(diǎn)P在此三角形所在平面內(nèi)的射影O是△ABC的外心,
∴AO=BO=CO,
∴PA=PB=PC,
∴使點(diǎn)P在此三角形所在平面內(nèi)的射影是△ABC的外心的條件為PA=PB=PC.
故答案為:PA=PB=PC.

點(diǎn)評(píng) 本題考查三角形外心條件的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.x2<4是x<2的( 。
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在同一平面直角坐標(biāo)系中,將曲線x2-36y2一8x+12=0變成曲線x′2-y′2-4x′+3=0.求滿足條件的伸縮變換.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在等比數(shù)列{an}中,a1,a9是方程x2+9x+16=0的兩根,若曲線$y=\frac{x^2}{2}-2lnx+1$在點(diǎn)P處的切線的斜率為$k=\frac{1}{4}{a_5}$,則切點(diǎn)P的橫坐標(biāo)xP=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x<3}\\{-cos(\frac{π}{3}x),3≤x≤9}\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4滿足f(xl)=f(x2)=f(x3)=f(x4)=a,則實(shí)數(shù)a的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}中a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,則a34=(  )
A.$\frac{34}{103}$B.100C.$\frac{1}{100}$D.$\frac{1}{104}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,正方形ABCD中,E為DC的中點(diǎn),若$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ+μ的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\overrightarrow{a}$•($\overrightarrow$+$\overrightarrow{c}$),其中向量$\overrightarrow{a}$=(sinx,-cosx),$\overrightarrow$=(sinx,-3cosx),$\overrightarrow{c}$=(-cosx,sinx).(a∈R).
(1)求函數(shù)f(x)的最大值和最小正周期;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.有一種大型商品,A,B兩地都有出售,且價(jià)格相同,某地居民從兩地之一購得商品后,運(yùn)回的費(fèi)用是:距離A地的運(yùn)費(fèi)是B地運(yùn)費(fèi)的3倍.已知A,B兩地距離10千米,顧客選A地或B地購買這種商品的標(biāo)準(zhǔn)是:包括運(yùn)費(fèi)和價(jià)格的總費(fèi)用較低,探究A,B兩地的售貨區(qū)域的分界線的形狀,并分別指出曲線上、曲線內(nèi)、曲線外的居民應(yīng)該如何選擇購貨地點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案