15.某地市高三理科學(xué)生有15000名,在一次調(diào)研測試中,數(shù)學(xué)成績ξ服從正態(tài)分布N(100,σ2),已知p(80<ξ≤100)=0.35,若按成績分層抽樣的方式取100份試卷進(jìn)行分析,則應(yīng)從120分以上的試卷中抽。ā 。
A.5份B.10份C.15份D.20份

分析 由題意結(jié)合正態(tài)分布曲線可得120分以上的概率,乘以100可得.

解答 解:∵數(shù)學(xué)成績ξ服從正態(tài)分布N(100,σ2),P(80<ξ≤100)=0.35,
∴P(80<ξ≤120)=2×0.35=0.70,
∴P(ξ>120)=$\frac{1}{2}$(1-0.70)=0.15,
∴100×0.15=15,
故選:C.

點(diǎn)評 本題考查正態(tài)分布曲線,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overrightarrow{a}$為單位向量,$\overrightarrow{a}$+$\overrightarrow$=(3,4).則|1+$\overrightarrow{a}$•$\overrightarrow$|的最大值為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知公差不為零的等差數(shù)列{an}滿足:a1=3,且a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Sn表示數(shù)列{an}的前n項(xiàng)和,求數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)A市120急救中心與B小區(qū)之間開120急救車所用時(shí)間為X分鐘(單程),所用時(shí)間只與道路通暢狀況有關(guān),取容量為50的樣本進(jìn)行統(tǒng)計(jì),如表:
X(分鐘)25303540
頻數(shù)6191510
(1)求X的分布列與數(shù)學(xué)期望;
(2)若A市120急救中心接到來自B小區(qū)的急救電話后準(zhǔn)備接病人進(jìn)行救護(hù),若從小區(qū)接病人上急救車大約需要5分鐘時(shí)間,求急救車從急救車中心出發(fā)接上病人返回到急救中心不超過75分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x3+$\sqrt{{a}^{2}{x}^{2}-ax+\frac{1}{4}}$(a≥0).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:函數(shù)f(x)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.關(guān)于函數(shù)f(x)=2sin2x+2$\sqrt{3}$cos2x,下面結(jié)論正確的是( 。
A.在區(qū)間$[{\frac{π}{12},\frac{7π}{12}}]$單調(diào)遞減B.在區(qū)間$[{\frac{π}{12},\frac{7π}{12}}]$單調(diào)遞增
C.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$單調(diào)遞減D.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“a,b,c,d成等差數(shù)列”是“a+d=b+c”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)y=kx的圖象上存在點(diǎn)(x,y)滿足約束條件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,則實(shí)數(shù)k的最大值為( 。
A.$\frac{1}{2}$B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a為實(shí)數(shù),若復(fù)數(shù)z=(a2-1)+(a+1)i為純虛數(shù),則$\frac{{a+{i^{2016}}}}{1+i}$的值為( 。
A.1B.0C.1+iD.1-i

查看答案和解析>>

同步練習(xí)冊答案