7.已知復(fù)數(shù)z=m2-1+(m+1)i(其中m∈R,i是虛數(shù)單位)是純虛數(shù),則復(fù)數(shù)m+i的共軛復(fù)數(shù)是( 。
A.1+iB.1-iC.-1-iD.-i

分析 利用復(fù)數(shù)是純虛數(shù),列出關(guān)系式,求解即可.

解答 解:由題意復(fù)數(shù)z=m2-1+(m+1)i(其中m∈R,i是虛數(shù)單位)是純虛數(shù),
可得:m2-1=0,m+1≠0,解得m=1,復(fù)數(shù)m+i=1+i的共軛復(fù)數(shù)是:1-i,
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的基本概念的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求函數(shù)y=(x-2)(x-3)(x-4)在x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,平行六面體ABCD-A′B′C′D′,其中AB=4,AD=3,AA′=3,∠BAD=90°,∠BAA′=60°,∠DAA′=60°,則AC′的長(zhǎng)為(  )
A.$\sqrt{55}$B.$\sqrt{65}$C.$\sqrt{85}$D.$\sqrt{95}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若函數(shù)f(x)=$\frac{1}{3}$(a-1)x3+$\frac{1}{2}$ax2-$\frac{1}{4}$x+$\frac{1}{5}$在其定義域內(nèi)有極值點(diǎn),則a的取值為(-∞,$\frac{-1-\sqrt{5}}{2}$)∪( $\frac{-1+\sqrt{5}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,若f(x)=3x2-1,取g=$\frac{1}{5}$則輸出的值為(  )
A.$\frac{19}{32}$B.$\frac{9}{16}$C.$\frac{5}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知正實(shí)數(shù)a,b滿足$\frac{a+b}{ab}$=1,則a+2b的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{2}$sin2x+$\sqrt{3}$cos2x-$\frac{{\sqrt{3}}}{2}$
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]時(shí),求函數(shù)f(x)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.命題p:?x∈(0,+∞),lnx>x-1,則命題p的否定是( 。
A.¬p:?x∉(0,+∞),lnx≤x-1B.¬p:?x∈(0,+∞),lnx≤x-1
C.¬p:?x∉(0,+∞),lnx≥x-1D.¬p:?x∈(0,+∞),lnx≤x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)=$\frac{1}{2}$x2-lnx在其定義域的一個(gè)子區(qū)間(k-1,k+1)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( 。
A.(1,2)B.[1,2)C.[0,2)D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案