某大型養(yǎng)雞場在本年度的第x月的盈利y(萬元)與x的對應(yīng)值如表:
x1234
y65708090
注:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2

(1)依據(jù)這些數(shù)據(jù)求出x,y之間的回歸直線方程
?
y
=
?
b
x+
?
a
;
(2)依據(jù)此回歸直線方程預(yù)測第五個月大約能盈利多少萬元.
考點(diǎn):回歸分析的初步應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)所給的數(shù)據(jù)先做出數(shù)據(jù)的平均數(shù),即樣本中心點(diǎn),根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程;
(2)將x=5代入線性回歸方程,即可得出預(yù)報(bào)值.
解答: 解:(1)
.
x
=(1+2+3+4)÷4=2.5,
.
y
=(65+70+80+90)÷4=76.25…2分
4
i=1
xiyi
=1×65+2×70+3×80+4×90=805…3分
4
i=1
xi2
=12+22+32+42=30,
∴b=
80-762.5
30-25
=8.5,…8分
a=76.25-8.5×2.5=55…9分
∴所求的回歸直線方程為y=8.5x+55,…10分
(2)將x=5代入上述方程得y=97.5(萬元)…11分
∴養(yǎng)雞場第五個月大約能盈利97.5萬元.…12分
點(diǎn)評:本題考查求線性回歸方程,是一個運(yùn)算量比較大的問題,解題時(shí)注意平均數(shù)的運(yùn)算不要出錯,注意系數(shù)的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-3x+2+2lnx(a>0)
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間,并指出在每個單調(diào)區(qū)間上是增函數(shù)還是減函數(shù);
(2)求實(shí)數(shù)a的取值范圍,使對任意的x∈[1,+∞),恒有f(x)≥0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

福建省第14屆運(yùn)動會在媽祖故里莆田舉行,在開幕式表演“籃球操”的訓(xùn)練中我校A、B、C三個同學(xué)一組進(jìn)行傳球訓(xùn)練,每個同學(xué)傳給另外兩個中的某一個的可能性都相同
(Ⅰ)列出從A開始3次傳球的所有路徑(用A、B、C表示);
(Ⅱ)求從起A開始3次傳球后,籃球停在A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)  設(shè)函數(shù)f(x)=ax+
x
x-1
(x>1)
(1)若a>0,求函數(shù)f(x)的最小值;
(2)若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f (x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x+m(a>0)
(1)若a=1時(shí)函數(shù)f(x)有三個互不相同的零點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若對任意的a∈[3,6],x∈[-2,2],不等式f(x)≤1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,最小正周期為2π的是( 。
A、y=cosx
B、y=sin(2x+π)
C、y=tanx
D、y=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對任意的正數(shù)x,y都有f(x•y)=f(x)+f(y),若數(shù)列{an}的前n項(xiàng)和為Sn,且滿足f(Sn+2)-f(an)=f(3)(n∈N*),則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市對上下班交通情況作抽樣調(diào)查,作出上下班時(shí)間各抽取的12輛機(jī)動車行駛時(shí)速(單位:km/h)的莖葉圖如圖.則上、下班行駛時(shí)速的中位數(shù)分別為( 。
A、28與28.5
B、29與28.5
C、28與27.5
D、29與27.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線3x+4y+2=0被圓x2+y2-2x-3=0截得的弦長為
 

查看答案和解析>>

同步練習(xí)冊答案