分析 (Ⅰ)當a=$\frac{1}{2}$時,不等式f(x)≥0 即 x2-$\frac{3}{2}$x+1≥0,從而求得它的解.
(Ⅱ)不等式f(x)≤0,即(x-$\frac{1}{a}$)(x-a)≤0,分類討論求得它的解集.
解答 解:(Ⅰ)當a=$\frac{1}{2}$時,有f(x)=x2-(a+$\frac{1}{a}$)x+1=x2-$\frac{3}{2}$x+1,
不等式f(x)≥0 即 x2-$\frac{3}{2}$x+1≥0,即 (x-$\frac{1}{2}$)(x-2)≥0,求得x≤$\frac{1}{2}$或 x≥2,
∴不等式的解為:{x|x≤$\frac{1}{2}$或 x≥2 }.
(Ⅱ)∵不等式f(x)≤0,即(x-$\frac{1}{a}$)(x-a)≤0,
又∵a>0,當0<a<1時,有$\frac{1}{a}$>a,∴不等式的解集為{x|a≤x≤$\frac{1}{a}$},
當a>1時,有$\frac{1}{a}$<a,∴不等式的解集為{x|a≥x≥$\frac{1}{a}$};
當a=1時,不等式的解為x=1.
點評 本題主要考查一元二次不等式的解法,二次函數(shù)的性質(zhì),體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1)(2) | B. | (2)(3) | C. | (3)(4) | D. | (1)(4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$或2 | C. | 2或$\frac{2\sqrt{3}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com