分析 把n=1代入即可求出,由數(shù)學(xué)歸納法可知n=k時(shí),左端為$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$,到n=k+1時(shí),左端為$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$+$\frac{1}{(k+1)(k+2)}$,從而可得答案.
解答 解:當(dāng)n=1時(shí),左邊=$\frac{1}{1(1+1)}$=$\frac{1}{2}$;
②假設(shè)n=k時(shí),$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$=$\frac{k}{k+1}$等式成立;
那么n=k+1時(shí),$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$+$\frac{1}{(k+1)(k+2)}$=$\frac{k}{k+1}$+$\frac{1}{(k+1)(k+2)}$,
所以從”k→k+1”需增添的項(xiàng)是$\frac{1}{(k+1)(k+2)}$.
故答案為:$\frac{1}{2}$,$\frac{1}{(k+1)(k+2)}$.
點(diǎn)評(píng) 本題考查數(shù)學(xué)歸納法,著重考查理解與觀察能力,考查推理證明的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | [$\frac{1}{16}$,1) | C. | (0,$\frac{1}{16}$) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f($\frac{1}{k-1}$)≥$\frac{1}{k-1}$ | B. | f($\frac{1}{k-1}$)≤$\frac{1}{k-1}$ | C. | f($\frac{1}{k-1}$)>$\frac{1}{k-1}$ | D. | f($\frac{1}{k-1}$)<$\frac{1}{k-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A=B | B. | B∩A=∅ | C. | A⊆B | D. | B⊆A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com