4.設(shè)i是虛數(shù)單位,復(fù)數(shù)$\frac{a-i}{1+i}$為純虛數(shù),則實(shí)數(shù)a的值為1.

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由實(shí)部為0且虛部不為0求得a值.

解答 解:$\frac{a-i}{1+i}$=$\frac{(a-i)(1-i)}{(1+i)(1-i)}=\frac{(a-1)-(a+1)i}{2}$.
∵復(fù)數(shù)$\frac{a-i}{1+i}$為純虛數(shù),
∴$\left\{\begin{array}{l}{a-1=0}\\{a+1≠0}\end{array}\right.$,即a=1.
故答案為:1.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a=$lo{g}_{\frac{1}{3}}2,b=lo{g}_{3}4,c=lo{g}_{3}2$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若tanα=$\frac{3}{4}$,則tan2α=( 。
A.-$\frac{7}{24}$B.$\frac{7}{24}$C.-$\frac{24}{7}$D.$\frac{24}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)是定義在R上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=-f(x)且當(dāng)x∈[0,2)時(shí),f(x)=xex-1,則f(-2017)+f(2018)=e-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{e}^{x}-a}{x}$-alnx(a∈R),其中e=2.71828…是自然對(duì)數(shù)的底數(shù).
(1)若f(x)=0的兩個(gè)根分別為x1,x2,且滿足x1x2=2,求a的值;
(2)當(dāng)a>0,討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且$\overrightarrow{a}$•$\overrightarrow$=1.若$\overrightarrow{e}$為平面單位向量,$(\overrightarrow a-\overrightarrow b)•\overrightarrow e$的最大值為( 。
A.7B.$\sqrt{7}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若點(diǎn)P分有向線段$\overrightarrow{AB}$所成的比是-$\frac{1}{3}$,則點(diǎn)B分有向線段$\overrightarrow{PA}$所成的比是-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在三棱錐A-BCD中,O為平面BCD內(nèi)一點(diǎn),若$\overrightarrow{AO}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AD}$),則O為△BCD的重心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)定義在(0,+∞)上的函數(shù)f(x)=axlnx-b(x2-1),其中a>0,b∈R..
(1)若a=1,b=0,求函數(shù)f(x)的極值;
(2)若不等式f(x)≤0在[1,+∞)上恒成立,求$\frac{a}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案