8.函數(shù)f(x)=e-x+a,g(x)=|lnx|,若x1,x2都滿足f(x)=g(x),則( 。
A.x1•x2>eB.1<x1•x2<eC.0<x1•x2<e-1D.e-1<x1•x2<1

分析 畫出圖象得出f(x1)=g(x1),f(x2)=g(x2),x1>1,0<x2<1,利用圖象得出范圍-1<e${\;}^{-{x}_{1}}$$-{e}^{-{x}_{2}}$=lnx1x2<0,求解即可得出e-1<x1x2<1.

解答 解:∵函數(shù)f(x)=e-x+a,g(x)=|lnx|,

∵f(x1)=g(x1),f(x2)=g(x2),x1>1,0<x2<1
∴e${\;}^{-{x}_{1}}$+a=lnx1,e${\;}^{-{x}_{2}}$+a=-lnx2,
即-1<e${\;}^{-{x}_{1}}$$-{e}^{-{x}_{2}}$=lnx1x2<0,
e-1<x1x2<1,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì),函數(shù)的零點(diǎn)的求解,學(xué)生運(yùn)用函數(shù)圖象解決問題的能力,觀察變化的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算:log2$\sqrt{\frac{7}{72}}$+log26-$\frac{1}{2}$log228.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線C:x2=16y的焦點(diǎn)為F,準(zhǔn)線為l,M是l上一點(diǎn),P是直線MF與C的一個(gè)交點(diǎn),若$\overrightarrow{FM}$=3$\overrightarrow{FP}$,則|PF|=( 。
A.$\frac{16}{3}$B.$\frac{8}{3}$C.$\frac{5}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=lg$\frac{1+x}{1-x}$,則“x<$\frac{9}{11}$”是“f(x)<1成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知△ABC中,AB邊上的中線|CM|=2,若動(dòng)點(diǎn)P滿足$\overrightarrow{AP}$=sin2θ$\overrightarrow{AM}$+cos2θ$\overrightarrow{AC}$(θ∈R),給出下列命題:①對(duì)?θ∈R,?λ∈R,使得$\overrightarrow{CP}$=λ$\overrightarrow{CM}$;②當(dāng)θ∈(-$\frac{π}{2}$,$\frac{π}{2}$)時(shí),存在唯一的θ,使$\overrightarrow{AP}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);③動(dòng)點(diǎn)P在運(yùn)動(dòng)的過程中,($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的取值范圍為[-2,0];④若|$\overrightarrow{AB}$|=2,動(dòng)點(diǎn)P在運(yùn)動(dòng)的過程中,|$\overrightarrow{AP}$|2+|$\overrightarrow{BP}$|2+|$\overrightarrow{CP}$|2的最小值為$\frac{8}{3}$.以上命題中,其中正確命題的序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}是等差數(shù)列,Sn是它的前n項(xiàng)和,則數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是等差數(shù)列.由此類比:數(shù)列{bn}是各項(xiàng)為正數(shù)的等比數(shù)列,Tn是它的前n項(xiàng)積,則數(shù)列{$\root{n}{{T}_{n}}$}為等比數(shù)列(寫出一個(gè)正確的結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知F1(-1,0),F(xiàn)2(1,0)為平面內(nèi)的兩個(gè)定點(diǎn),動(dòng)點(diǎn)P滿足|PF1|+|PF2|=2$\sqrt{2}$,記點(diǎn)P的軌跡為曲線M.點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C是曲線M上的不同三點(diǎn),且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$
(Ⅰ)求直線AB與OC的斜率之積;
(Ⅱ)當(dāng)直線AB過點(diǎn)F1時(shí),求直線AB、OC與x軸所圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在扇形AOB中,OA⊥OB,以O(shè)A,OB為直徑的半圓交于點(diǎn)C,點(diǎn)P在如圖所示圖形的陰影區(qū)域中(含邊界),若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),則2x+y的取值范圍是( 。
A.[0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]C.[1,$\sqrt{5}$]D.[$\sqrt{5}$,2$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若復(fù)數(shù)z滿足z2=$\overline{z}$,則復(fù)數(shù)z的個(gè)數(shù)為4個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案