9.當(dāng)x為何值時,代數(shù)式x2-5x+6的值
(1)大于0;
(2)等于0;
(3)小于0.

分析 根據(jù)題意,分別令x2-5x+6>0,=0和<0,求出對應(yīng)不等式的解集即可.

解答 解:(1)令x2-5x+6>0,即(x-2)(x-3)>0,
解得x<2,或x>3,
∴當(dāng)x<2,或x>3時,代數(shù)式x2-5x+6的值大于0;
(2)令x2-5x+6=0,即(x-2)(x-3)=0,
解得x=2,或x=3,
∴當(dāng)x=2,或x=3時,代數(shù)式x2-5x+6的值等于0;
(3)令x2-5x+6<0,即(x-2)(x-3)<0,
解得2<x<3,
∴當(dāng)2<x<3時,代數(shù)式x2-5x+6的值小于0.

點(diǎn)評 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.己知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=21og2(1-x).
(1)求函數(shù)f(x)及g(x)的解析式;
(2)用函數(shù)單調(diào)性的定義證明:函數(shù)g(x)在(0,1)上是減函數(shù);
(3)若關(guān)于x的方程f(2x)=m有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.方程4x2-y2+6x-3y=0表示的圖形是( 。
A.直線2x-y=0B.直線2x+y+3=0
C.直線2x-y=0和直線2x+y+3=0D.直線2x+y=0和直線2x-y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)求與直線3x+4y-7=0垂直.且與原點(diǎn)的距離為6的直線方程;
(2)求經(jīng)過直線l1:2x+3y-5=0與l2:7x+15y+1=0的交點(diǎn).且平行于直線 x+2y-3=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式(x-3)2<1的解集是( 。
A.{x|x<2}B.{x|2<x<4}C.{x|x>4}D.{x|x<2{∪{x|x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解下列不等式:
(1)(x-1)2≤16;
(2)(3x-2)2>25;
(3)(2x+1)2<-(x+2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(2x-$\frac{π}{6}$)+B.其中A>0,B∈R,且當(dāng)x∈[0,$\frac{7π}{12}$]時,f(x)的值域是[-2,1].
(1)求A與B的值,并作出f(x)在區(qū)間[$\frac{π}{12}$,$\frac{13}{12}π$]上的圖象;
(2)若關(guān)于x的方程f(x)-c=0在區(qū)間[0,$\frac{π}{2}$]上有兩個不相等的實(shí)根,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=|x2-a|在區(qū)間[-1,1]上的最大值為M(a),則M(a)min=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)是偶函數(shù),當(dāng)x>0時,f(x)=x2-2x,則f(-$\frac{1}{2}$)=( 。
A.$\frac{5}{4}$B.$-\frac{5}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案