3.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的部分圖象如圖所示,則f(x)的遞增區(qū)間為( 。
A.$({-\frac{π}{12}+2kπ,\frac{5π}{12}+2kπ})$,k∈ZB.$({-\frac{π}{12}+kπ,\frac{5π}{12}+kπ})$,k∈Z
C.$({-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ})$,k∈ZD.$({-\frac{π}{6}+kπ,\frac{5π}{6}+kπ})$,k∈Z

分析 由函數(shù)的最值求出A,由周期求出ω,由特殊點的坐標(biāo)求出φ的值,可得函數(shù)的解析式.再根據(jù)正弦函數(shù)的單調(diào)性,得出結(jié)論.

解答 解:由圖象可知A=2,$\frac{3}{4}T=\frac{11π}{12}-\frac{π}{6}=\frac{3π}{4}$,所以T=π,故ω=2.
由五點法作圖可得2•$\frac{π}{6}$+φ=0,求得φ=-$\frac{π}{3}$,所以,$f(x)=2sin(2x-\frac{π}{3})$.
由$2x-\frac{π}{3}∈(2kπ-\frac{π}{2}\;,\;2kπ+\frac{π}{2})$(k∈Z),得$x∈(kπ-\frac{π}{12}\;,\;kπ+\frac{5π}{12})$(k∈Z).
所以f(x)的單增區(qū)間是$(kπ-\frac{π}{12}\;,\;kπ+\frac{5π}{12})$(k∈Z),
故選:B.

點評 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)的最值求出A,由周期求出ω,由特殊點的坐標(biāo)求出φ的值,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,BC=7,cosA=$\frac{1}{5}$,sinC=$\frac{2\sqrt{6}}{7}$.若動點P滿足$\overrightarrow{AP}$=$\frac{λ}{2}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),則點的軌跡與直線AB,AC所圍成的封閉區(qū)域的面積為(  )π
A.$3\sqrt{6}$B.$4\sqrt{6}$C.$6\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}是等比數(shù)列,若a2=2,a3=-4,則a5等于(  )
A.8B.-8C.16D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若復(fù)數(shù)z滿足$\frac{(2+i)^{2}}{z}$=i,則z=4-3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果點P(x,y)在平面區(qū)域$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$上,則x2+(y+1)2的最大值和最小值分別是(  )
A.3,$\frac{3}{{\sqrt{5}}}$B.9,$\frac{9}{5}$C.9,2D.3,$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)i為虛數(shù)單位,(-3+4i)2=a+bi(a,b∈R),則|a+bi|等于( 。
A.5B.10C.25D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若${3^a}•{9^b}=\frac{1}{3}$,則下列等式正確的是( 。
A.a+b=-1B.a+b=1C.a+2b=-1D.a+2b=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知c為實數(shù),對于實數(shù)p,q定義運算“*”,p*q=$\left\{\begin{array}{l}{{p}^{2}+cq-{c}^{2}(p≥q)}\\{-\frac{1}{2}{p}^{2}+cq+\frac{1}{2}{c}^{2}(p<q)}\end{array}\right.$且函數(shù)f(x)=(2x-c)*x
(1)若c=$\frac{1}{3}$,且方程f(x)=d恰有三個不相等的實根,求實數(shù)d的取值范圍
(2)若c>0,且函數(shù)f(x)在區(qū)間(a,b)上既有最大值又有最小值,試分別求出a,b的取值范圍(用c表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將除顏色外完全相同的一個白球、一個黃球、兩個紅球分給三個小朋友,且每個小朋友至少分得一個球的分法有 ( 。┓N.
A.15B.18C.21D.24

查看答案和解析>>

同步練習(xí)冊答案