13.某三棱錐的三視圖如圖所示,則該三棱錐四個面的面積中最大的是( 。
A.$\sqrt{5}$B.3C.$\frac{{3\sqrt{5}}}{2}$D.$3\sqrt{5}$

分析 根據(jù)三視圖作出三棱錐的直觀圖,計算四個側(cè)面的面積進(jìn)行比較.

解答 解:作出三棱錐P-ABC的直觀圖如圖所示,過A作AD⊥BC,垂足為D,連結(jié)PD.由三視圖可知PA⊥平面ABC,
AB=AD=1,CD=PA=2,∴BC=3,PD=$\sqrt{P{A}^{2}+A{D}^{2}}$=$\sqrt{5}$.AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{5}$,AB=$\sqrt{2}$.BC⊥PD.
∴SABC=$\frac{1}{2}×BC×AD$=$\frac{3}{2}$,S△ABP=$\frac{1}{2}×AB×PA$=$\sqrt{2}$,S△ACP=$\frac{1}{2}×AC×PA$=$\sqrt{5}$,S△BCP=$\frac{1}{2}×BC×PD$=$\frac{3\sqrt{5}}{2}$.
∴三棱錐P-ABC的四個面中,側(cè)面PBC的面積最大.
故選C.

點(diǎn)評 本題考查了棱錐的結(jié)構(gòu)特征和三視圖,面積計算,作出直觀圖是解題關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A.y=2xB.y=$\sqrt{x}$C.y=|x|D.y=-x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列四個判斷:
①某校高三一班和高三二班的人數(shù)分別是m,n,某次測試數(shù)學(xué)平均分分別是a,b,則這兩個班的數(shù)學(xué)的平均分為$\frac{a+b}{2}$;
②10名工人某天生產(chǎn)同一種零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
③設(shè)從總體中抽取的樣本為(x1,y1),(x2,y2),…,(xn,yn),若記$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\underset{\stackrel{n}{\;}}{i=1}$yi,則回歸直線方程$\stackrel{∧}{y}$=bx+a必過點(diǎn)($\overline{x}$,$\overrightarrow{y}$); 
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
其中正確判斷的個數(shù)有(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$y=sin(\frac{1}{2}x+\frac{π}{4})$的周期為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=-2x2+(a+3)x+1-2a,g(x)=x(1-2x)+a,其中a∈R.
(1)若函數(shù)f(x)是偶函數(shù),求函數(shù)f(x)在區(qū)間[-1,3]上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當(dāng)a≤1時,f(x)在區(qū)間[1,+∞)上為減函數(shù);
(3)當(dāng)x∈[-1,3],函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=x3+ax2,曲線y=f(x)在點(diǎn)P(-1,b)處的切線平行于直線3x+y=0,則切線方程為3x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個直棱柱被一個平面截去一部分后,剩余部分的三視圖如圖所示,則該剩余部分的體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a,b是兩條不同直線,下列命題α,β,γ是三個不同平面,下列命題不正確的是( 。
A.b?α,a∥b⇒a∥αB.a∥α,α∩β=b,a?β⇒a∥b
C.a?α,b?α,a∩b=p,a∥β,b∥β⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow$+$\overrightarrow{a}$)=2,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊答案