4.已知函數(shù)f(x)=ax3+bx2+cx+d,其導(dǎo)函數(shù)的圖象如圖所示,則函數(shù)f(x)的圖象只可能是(  )
A.B.
C.D.

分析 關(guān)鍵導(dǎo)函數(shù)圖象的位置以及形狀對(duì)原函數(shù)進(jìn)行分析解答.

解答 解:由題意,導(dǎo)函數(shù)圖象為無零點(diǎn)的開口向上的二次函數(shù)圖象,并且最低點(diǎn)為(1,1),所以原函數(shù)在x=1出的導(dǎo)數(shù)為1,由此排除選項(xiàng)A,B;
再由導(dǎo)函數(shù)的定義域?yàn)镽,而排除選項(xiàng)C;
故選D.

點(diǎn)評(píng) 本題考查了函數(shù)圖象以及導(dǎo)函數(shù)圖象與原函數(shù)的關(guān)系;屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=(x-1)0+lg$\frac{1-x}{1+x}$的定義域是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,已知Sn+an=-$\frac{1}{2}{n^2}-\frac{3}{2}$n+1(n∈N*
(1)設(shè)bn=an+n,證明:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知{an}是首項(xiàng)為1,公比為q的等比數(shù)列,且a4,a6,a5成等差數(shù)列.
(Ⅰ)求{an}的前n項(xiàng)和Sn
(Ⅱ)設(shè){bn}是以2為首項(xiàng),q為公差的等差數(shù)列,其前n項(xiàng)和為Tn,當(dāng)n≥2時(shí),比較Tn與bn的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知A={1,2,3,…,10},B={11,12,…,15}.現(xiàn)從A,B中各隨機(jī)抽取3個(gè)元素組成一個(gè)樣本.用Pijk(i<j<k且i,j,k∈A∪B)表示元素i,j,k同時(shí)出現(xiàn)在樣本中的概率,則所有Pijk的和為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=x3+2x2+bx-3在x1,x2處取得極值,且x${\;}_{1}^{2}+{x}_{2}^{2}$=$\frac{34}{9}$,則b=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=x2-a|x-1|+b(a>0,b>-1)
(1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
(2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點(diǎn)恰有兩個(gè),且落在區(qū)間[0,1),(1,2]內(nèi)各一個(gè),求a-b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.從6名男醫(yī)生和3名女醫(yī)生中選出5人組成一個(gè)醫(yī)療小組,若這個(gè)小組中必須男女醫(yī)生都有,共有120種不同的組建方案(結(jié)果用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a∈R,“cos2α=0”是“sinα=cosα”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案