19.已知A={1,2,3,…,10},B={11,12,…,15}.現(xiàn)從A,B中各隨機(jī)抽取3個(gè)元素組成一個(gè)樣本.用Pijk(i<j<k且i,j,k∈A∪B)表示元素i,j,k同時(shí)出現(xiàn)在樣本中的概率,則所有Pijk的和為20.

分析 討論ijk中的三個(gè)數(shù)與集合A,B的關(guān)系,分情況計(jì)算所對(duì)應(yīng)的概率,再考慮這種情況的所有個(gè)數(shù),得出概率和.

解答 解;(1)當(dāng)i,j,k∈A時(shí),$\sum_{\;}^{\;}{P}_{ijk}$=$\frac{{C}_{3}^{3}{C}_{5}^{3}}{{C}_{10}^{3}{C}_{5}^{3}}×{C}_{10}^{3}$=1.
(2)當(dāng)i,j∈A,k∈B時(shí),$\sum_{\;}^{\;}{P}_{ijk}$=$\frac{{C}_{2}^{2}{C}_{8}^{1}{C}_{1}^{1}{C}_{4}^{2}}{{C}_{10}^{3}{C}_{5}^{3}}×{C}_{10}^{2}{C}_{5}^{1}$=9.
(3)當(dāng)i∈A,j,k∈B時(shí),$\sum_{\;}^{\;}{P}_{ijk}$=$\frac{{C}_{1}^{1}{C}_{9}^{2}{C}_{2}^{2}{C}_{3}^{1}}{{C}_{10}^{3}{C}_{5}^{3}}×{C}_{10}^{1}{C}_{5}^{2}$=9.
(4)當(dāng)i,j,k∈B時(shí),$\sum_{\;}^{\;}{P}_{ijk}$=$\frac{{C}_{10}^{3}{C}_{3}^{3}}{{C}_{10}^{3}{C}_{5}^{3}}×{C}_{5}^{3}$=1.
∴$\sum_{\;}^{\;}{P}_{ijk}$=1+9+9+1=20.
故答案為20.

點(diǎn)評(píng) 本題考查了古典概型的概率計(jì)算,組合數(shù)公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一個(gè)袋子中有4個(gè)球,其中2個(gè)白球,2個(gè)紅球,討論下列A,B事件的相互獨(dú)立性與互斥性.
(1)A:取一個(gè)球?yàn)榧t球,B:取出的紅球放回后,再從中取一球?yàn)榘浊颍?br />(2)從袋中取2個(gè)球,A:取出的兩球?yàn)橐话浊蛞患t球;B:取出的兩球中至少一個(gè)白球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在等比數(shù)列{an}中,a1•a2•a3=27,a2•a4=81
(1)求a1和公比q;
(2)若{an}各項(xiàng)均為正數(shù),求數(shù)列{n•an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知公差大于零的等差數(shù)列{an}滿足:a3a4=48,a3+a4=14.
(Ⅰ) 求數(shù)列{an}通項(xiàng)公式;
(Ⅱ) 記${b_n}={(\sqrt{2})^{a_n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=sinx(cosx-$\sqrt{3}$sinx)(0≤x≤$\frac{π}{2}$)的值域?yàn)椋ā 。?table class="qanwser">A.[$\sqrt{3}$,1+$\frac{\sqrt{3}}{2}$]B.[-$\frac{\sqrt{3}}{2}$,1-$\frac{\sqrt{3}}{2}$]C.[0,1]D.[-$\sqrt{3}$,1-$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ax3+bx2+cx+d,其導(dǎo)函數(shù)的圖象如圖所示,則函數(shù)f(x)的圖象只可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某校一?荚嚁(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:

試根據(jù)圖表中的信息解答下列問題:
(1)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在[70,80)之間的頻數(shù);
(2)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分?jǐn)?shù)段的試卷中抽取8份進(jìn)行分析,再從中任選2人進(jìn)行交流,求交流的2名學(xué)生中,恰有一名成績位于[70,80)分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax2+bx+c,當(dāng)|x|≤1,|f(x)|≤1恒成立.若a=1,b=c,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.(1+x)3(1+y)4的展開式中x2y2的系數(shù)是18.

查看答案和解析>>

同步練習(xí)冊(cè)答案