9.設(shè)函數(shù)f(x)=x3+2x2+bx-3在x1,x2處取得極值,且x${\;}_{1}^{2}+{x}_{2}^{2}$=$\frac{34}{9}$,則b=-3.

分析 由題意可得x1,x2為方程f′(x)=3x2+4x+b=0的兩根,由韋達定理整體配方可得b的方程,解方程可得.

解答 解:∵函數(shù)f(x)=x3+2x2+bx-3在x1,x2處取得極值,
∴x1,x2為方程f′(x)=3x2+4x+b=0的兩根,
由韋達定理可得x1+x2=-$\frac{4}{3}$,x1x2=$\frac{3}$,
∴x${\;}_{1}^{2}+{x}_{2}^{2}$=(x1+x22-2x1x2=(-$\frac{4}{3}$)2-2×$\frac{3}$=$\frac{34}{9}$,
解得b=-3
故答案為:-3

點評 本題考查函數(shù)在某點取極值的條件,涉及韋達定理和整體配方的思想,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x2-mx+1,對于任意x0∈R,存在y0>0,使得f(x0)=y0,求m的范圍:(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.下面四個圖案,都是由小正三角形構(gòu)成,設(shè)第n個圖形中所有小正三角形邊上黑點的總數(shù)為f(n).

(1)求出f(2),f(3),f(4),f(5);
(2)找出f(n)與f(n+1)的關(guān)系,并求出f(n)的表達式;
(3)求證:$\frac{1}{f(1)}$+$\frac{1}{f(2)}$+$\frac{1}{f(3)}$+…+$\frac{1}{f(n)}$<$\frac{2}{3}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an}是遞增的等差數(shù)列,且滿足a2a4=21,a1+a5=10.
(1)求{an}的通項公式;
(2)若數(shù)列{cn}前n項和Cn=an+1,數(shù)列{bn}滿足bn=2ncn(n∈N*),求{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ax3+bx2+cx+d,其導(dǎo)函數(shù)的圖象如圖所示,則函數(shù)f(x)的圖象只可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的最值:
(1)y=2x3+3x2,x∈[-2,1];
(2)y=ln(1+x2),x∈[-1,2];
(3)y=x+$\sqrt{1-x}$,x∈[-5,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)x、y滿足條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{ax+y+5≥0}\end{array}\right.$,若目標函數(shù)z=3x+y的最小值為5,則a的值為( 。
A.-17B.-2C.2D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合Ωn={X|X=(x1,x2,…,xi,…,xn),xi∈{0,1},i=1,2,…,n},其中n≥3.?X={x1,x2,…,xi,…,xn}∈Ωn,稱xi為X的第i個坐標分量.若S⊆Ωn,且滿足如下兩條性質(zhì):
①S中元素個數(shù)不少于4個;
②?X,Y,Z∈S,存在m∈{1,2,…,n},使得X,Y,Z的第m個坐標分量是1;
則稱S為Ωn的一個好子集.
(1)S={X,Y,Z,W}為Ω3的一個好子集,且X=(1,1,0),Y=(1,0,1),寫出Z,W;
(2)若S為Ωn的一個好子集,求證:S中元素個數(shù)不超過2n-1;
(3)若S為Ωn的一個好子集,且S中恰有2n-1個元素,求證:一定存在唯一一個k∈{1,2,…,n},使得S中所有元素的第k個坐標分量都是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在等比數(shù)列{an}中,a1=1,a4=8
(I)求數(shù)列{an}的通項公式;
(Ⅱ)若a3,a5分別為等差數(shù)列{bn}的第6項和第8項,求|b1|+|b2|+|b3|+…+|bn|(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案