17.將函數(shù)y=sin(x+$\frac{π}{6}$)(x∈R)的圖象上所有點的縱坐標(biāo)不變橫坐標(biāo)縮小到原來的$\frac{1}{2}$,再把圖象上各點向左平移$\frac{π}{4}$個單位長度,則所得的圖象的解析式為( 。
A.y=sin(2x+$\frac{5}{6}π$)B.y=sin($\frac{1}{2}$x+$\frac{1}{6}$π)C.y=sin(2x+$\frac{2}{3}$π)D.y=sin($\frac{1}{2}$x+$\frac{5}{12}$π)

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=sin(x+$\frac{π}{6}$)(x∈R)的圖象上所有點的縱坐標(biāo)不變橫坐標(biāo)縮小到原來的$\frac{1}{2}$,
可得y=sin(2x+$\frac{π}{6}$)的圖象,
再把圖象上各點向左平移$\frac{π}{4}$個單位長度,
則所得的圖象的解析式為y=sin[2(x+$\frac{π}{4}$)+$\frac{π}{6}$]=sin(2x+$\frac{π}{6}$+$\frac{π}{2}$)=sin(2x+$\frac{2π}{3}$),
故選:C.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-4a|x|+2,(a∈R).
(1)若函數(shù)f(x)在區(qū)間(-4,4)上有四個零點,求實數(shù)a的取值范圍;
(2)當(dāng)a=1時,設(shè)函數(shù)f(x)在[m-1,m+1]上的最大值為g(m),求g(m)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.長方體ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,則BD1與平面ABCD所成角的大小為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.長方體ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,則BD1與平面ABCD所成的角的大小是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,其中圖1為正視圖和側(cè)視圖(三角形為等腰直角三角形,四邊形為邊長為2的正方形),圖2為俯視圖(正方形為圓內(nèi)接正方形),則這個幾何體的表面積為(  )
A.$2\sqrt{2}π+20$B.$\frac{{2\sqrt{2}π}}{3}+8$C.$({2\sqrt{2}+2})π+16$D.$2\sqrt{2}π+16$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過拋物線x2=4y的焦點任作一直線l交拋物線于M,N兩點,O為坐標(biāo)原點,則△MON的面積的最小值為( 。
A.2B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={x|x2-3x-4>0},集合B={x|-2<x<5},則A∩B=( 。
A.{x|-1<x<4}B.{x|-2<x<-1或4<x<5}C.{x|x<-1或x>4}D.{x|-2<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線y2=4x的焦點為F,A、B為拋物線上兩點,若$\overrightarrow{AF}=3\overrightarrow{FB}$,O為坐標(biāo)原點,則△AOB的面積為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{8\sqrt{3}}}{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知以F為焦點的拋物線y2=4x上的兩點A,B滿足$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則弦AB中點到拋物線準(zhǔn)線的距離為$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊答案