2.圓(x-2)2+y2=4被直線x=1截得的弦長(zhǎng)為(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

分析 算出已知圓的圓心為C(2,0),半徑r=2.利用點(diǎn)到直線的距離公式,算出點(diǎn)C到直線直線l的距離d=1,由垂徑定理加以計(jì)算,可得直線l被圓截得的弦長(zhǎng).

解答 解:圓(x-2)2+y2=4的圓心為C(3,0),半徑r=2,
∵點(diǎn)C到直線直線x=1的距離d=1,
∴根據(jù)垂徑定理,得圓(x-2)2+y2=4被直線x=1截得的弦長(zhǎng)為2$\sqrt{4-1}$=2$\sqrt{3}$
故選:D.

點(diǎn)評(píng) 本題給出直線與圓的方程,求直線被圓截得的弦長(zhǎng),著重考查點(diǎn)到直線的距離公式、圓的方程和直線與圓的位置關(guān)系等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如果直線l∥m,并且直線l⊥α,那么直線m與平面α的位置關(guān)系是m⊥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知x,y∈(0,+∞),2x-1=($\frac{1}{2}$)y,若$\frac{1}{x}$+$\frac{m}{y}$(m>0)的最小值為3,則m的值為4-2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.判斷方程$\left\{\begin{array}{l}{x=sinθ+\frac{1}{sinθ}}\\{y=sinθ-\frac{1}{sinθ}}\end{array}\right.$(θ是參數(shù)且θ∈(0,π))表示的曲線的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.二次曲線$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù))的焦點(diǎn)坐標(biāo)為( 。
A.(±5,0)B.(0,5)C.(±$\sqrt{7}$,0)D.(0,±$\sqrt{7}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)O是坐標(biāo)原點(diǎn),若直線l:y=x+b(b>0)與圓x2+y2=4交于不同的兩點(diǎn)P1、P2,且$|{\overrightarrow{{P_1}{P_2}}}|≥|{\overrightarrow{O{P_1}}+\overrightarrow{O{P_2}}}|$,則實(shí)數(shù)b的最大值是( 。
A.$\sqrt{2}$B.2C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在空間直角坐標(biāo)系中,點(diǎn)M(0,2,-1)和點(diǎn)N(-1,1,0)的距離是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)$y={x^2}+\frac{1}{x}+1$在x=1處的切線方程是( 。
A.x-y+2=0B.x-y-4=0C.x+y-4=0D.x+y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$\overrightarrow{a}$=(2,3,1),$\overrightarrow$=(x,y,2),若$\overrightarrow{a}$∥$\overrightarrow$,則x+y=10.

查看答案和解析>>

同步練習(xí)冊(cè)答案