分析 (1)由題意可得AC=$\frac{2}{3}$AB,再利用正弦定理求得求得$\frac{sinB}{sinC}$=$\frac{AC}{AB}$的值.
(2)由條件求得CD=2BD=$\sqrt{2}$,設(shè)AC=2k,則 AB=3k,△ADB中、△ADC中,分別利用余弦定理求得k的值,可得AB的值.
解答 解:(1)設(shè)∠BAD=θ,則由sin∠BAD:sin∠CAD=1:3,△ADC的面積是△ADB面積的2倍,
可得$\frac{1}{2}$•AD•AC•sin∠CAD=2•($\frac{1}{2}$AB•AD•sin∠BAD),求得AC=$\frac{2}{3}$AB.
在△ABD中,由正弦定理可得 $\frac{AD}{sinB}$=$\frac{AB}{sin∠ADB}$ ①,△ACD中,由正弦定理可得$\frac{AD}{sin∠C}$=$\frac{AC}{sin∠ADC}$ ②.
由于∠ADB 和∠ADC互補(bǔ),故sin∠ADB=sin∠ADC,
由①②求得$\frac{sinB}{sinC}$=$\frac{AC}{AB}$=$\frac{2}{3}$.
(2)∵△ADC的面積是△ADB面積的2倍,AD=1,BD=$\frac{\sqrt{2}}{2}$,
∴$\frac{1}{2}$•AD•CD•sin∠ADC=2•($\frac{1}{2}$AD•BD•sin∠ADB),∴CD=2BD=$\sqrt{2}$.
設(shè)AC=2k,則 AB=3k,△ABD中,由余弦定理可得
AB2=9k2=AD2+BD2-2AD•BD•cos∠ADB=1+$\frac{1}{2}$+$\sqrt{2}$cos∠ADC ①,
△ADC中,由余弦定理可得 AC2=4k2=AD2+DC2-2AD•CD•cos∠ADC=1+2-2$\sqrt{2}$cos∠ADC②,
∴由①②求得 k=$\sqrt{\frac{6}{11}}$,∴AB=3k=3$\sqrt{\frac{6}{11}}$=$\frac{3\sqrt{66}}{11}$,AC=2k=2$\sqrt{\frac{6}{11}}$=$\frac{2\sqrt{66}}{11}$.
點(diǎn)評(píng) 本題主要考查正弦定理、余弦定理的應(yīng)用,注意邊角互換,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120 | B. | 84 | C. | 72 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,3) | B. | (2,4) | C. | (3,4] | D. | (2,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1008個(gè) | B. | 2014個(gè) | C. | 2015個(gè) | D. | 4028個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com