【題目】如圖,在三棱柱中,底面為正三角形,側(cè)棱底面.已知 的中點(diǎn),

(1)求證:平面平面;

(2)求證:A1C∥平面;

(3)求三棱錐的體積.

【答案】(1)見解析;(2)見解析;(3)

【解析】

(1)通過證明AD⊥平面BB1C1C,得出平面AB1D⊥平面BB1C1C;

(2)連接A1B,設(shè)A1B∩AB1=E,連接DE,易證 DEA1C,故而A1C∥平面AB1D;

(3)根據(jù) 求出棱錐的體積

(1)證明:由已知為正三角形,且DBC的中點(diǎn),所以

因?yàn)閭?cè)棱底面,所以底面

又因?yàn)?/span>底面,所以.,所以平面

因?yàn)?/span>平面,所以平面平面

(2)證明:連接,設(shè),連接

由已知得,四邊形為正方形,的中點(diǎn).

因?yàn)?/span>的中點(diǎn),所以

又因?yàn)?/span>平面AB1D,平面AB1D所以A1C∥平面AB1D

(3)由(2)可知A1C∥平面AB1D.,所以到平面AB1D的距離相等,

所以

由題設(shè)及,得,且

所以 ,

所以三棱錐的體積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),則|AB|+|DE|的最小值為( 。
A.16
B.14
C.12
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對立的兩個(gè)事件是  

A. 至少有一個(gè)白球;都是白球 B. 至少有一個(gè)白球;至少有一個(gè)紅球

C. 至少有一個(gè)白球;紅、黑球各一個(gè) D. 恰有一個(gè)白球;一個(gè)白球一個(gè)黑球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓和雙曲線有共同焦點(diǎn),是它們的一個(gè)交點(diǎn),記橢圓和雙曲線的離心率分別,則的最小值是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sin(A+C)=8sin2
(Ⅰ)求cosB;
(Ⅱ)若a+c=6,△ABC面積為2,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(Ⅰ)求a;
(Ⅱ)證明:f(x)存在唯一的極大值點(diǎn)x0 , 且e﹣2<f(x0)<2﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個(gè)交點(diǎn)的距離為π,若f(x)>1對x∈(﹣ , )恒成立,則φ的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時(shí),f(x)=2x1 , 有以下結(jié)論:
①2是函數(shù)f(x)的一個(gè)周期;
②函數(shù)f(x)在(1,2)上單調(diào)遞減,在(2,3)上單調(diào)遞增;
③函數(shù)f(x)的最大值為1,最小值為0;
④當(dāng)x∈(3,4)時(shí),f(x)=23x
其中,正確結(jié)論的序號是 . (請寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,an= +2(n﹣1)(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關(guān)于n的表達(dá)式;
(2)設(shè)數(shù)列 的前n項(xiàng)和為Tn , 證明:

查看答案和解析>>

同步練習(xí)冊答案