10.定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比λ;
(1)設(shè)圓C0:x2+y2=1,求過P(2,0)的直線關(guān)于圓C0的距離比λ=$\sqrt{3}$的直線方程;
(2)若圓C與y軸相切于點(diǎn)A(0,3),且直線y=x關(guān)于圓C的距離比λ=$\sqrt{2}$,求此圓C的方程;
(3)是否存在點(diǎn)P,使過P的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓C1:(x+1)2+y2=1與C2:(x-3)2+(y-3)2=4的距離比始終相等?若存在,求出相應(yīng)的P點(diǎn)坐標(biāo);若不存在,請說明理由.

分析 (1)設(shè)過P(2,0)的直線方程為y=k(x-2),求得已知圓的圓心和半徑,由新定義,可得方程,求得k,即可得到所求直線方程;
(2)設(shè)圓C的方程為(x-a)2+(y-b)2=r2,由題意可得a2+(3-b)2=r2,①|(zhì)a|=r②,$\frac{|a-b|}{\sqrt{2}}$=$\sqrt{2}$r③,解方程可得a,b,r,進(jìn)而得到所求圓的方程;
(3)假設(shè)存在點(diǎn)P(m,n),設(shè)過P的兩直線為y-n=k(x-m)和y-n=-$\frac{1}{k}$(x-m),求得兩圓的圓心和半徑,由新定義可得方程,化簡整理可得k(2m+n-1)+(m-2n-3)=0,或k(2m-n+5)+(3-m-2n)=0,再由恒成立思想可得m,n的方程,解方程可得P的坐標(biāo).

解答 解:(1)設(shè)過P(2,0)的直線方程為y=k(x-2),
圓C0:x2+y2=1的圓心為(0,0),半徑為1,
由題意可得$\frac{|2k|}{\sqrt{1+{k}^{2}}}$=$\sqrt{3}$,
解得k=±$\sqrt{3}$,
即有所求直線為y=±$\sqrt{3}$(x-2);
(2)設(shè)圓C的方程為(x-a)2+(y-b)2=r2
由題意可得a2+(3-b)2=r2,①
|a|=r②,$\frac{|a-b|}{\sqrt{2}}$=$\sqrt{2}$r③
解方程可得a=-3,b=3,r=3,或a=1,b=3,r=1.
則有圓C的方程為(x+3)2+(y-3)2=9或(x-1)2+(y-3)2=1;
(3)假設(shè)存在點(diǎn)P(m,n),設(shè)過P的兩直線為y-n=k(x-m)和
y-n=-$\frac{1}{k}$(x-m),又C1:(x+1)2+y2=1的圓心為(-1,0),半徑為1,
C2:(x-3)2+(y-3)2=4的圓心為(3,3),半徑為2,
由題意可得$\frac{|k+km-n|}{\sqrt{1+{k}^{2}}}$=$\frac{|\frac{3}{k}+3-\frac{m}{k}-n|}{2\sqrt{1+\frac{1}{{k}^{2}}}}$,
化簡可得k(2m+n-1)+(m-2n-3)=0,或k(2m-n+5)+(3-m-2n)=0,
即有$\left\{\begin{array}{l}{2m+n=1}\\{m-2n=3}\end{array}\right.$或$\left\{\begin{array}{l}{2m-n=-5}\\{m+2n=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=1}\\{n=-1}\end{array}\right.$或$\left\{\begin{array}{l}{m=-\frac{7}{5}}\\{n=\frac{11}{5}}\end{array}\right.$.
則存在這樣的點(diǎn)P(1,-1)和(-$\frac{7}{5}$,$\frac{11}{5}$),使得使過P的任意兩條互相垂直的直線
分別關(guān)于相應(yīng)兩圓的距離比始終相等.

點(diǎn)評 本題考查新定義的理解和運(yùn)用,考查直線和圓的位置關(guān)系,以及點(diǎn)到直線的距離公式,考查恒成立問題的解法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式組$\left\{\begin{array}{l}{|x|-1<0}\\{x^2-3x<0}\end{array}\right.$的解集是( 。
A.{x|0<x<1}B.{x|0<x<3}C.{x|-1<x<1}D.{x|-1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.頂點(diǎn)在原點(diǎn)且以雙曲線$\frac{{x}^{2}}{3}$-y2=1的右焦點(diǎn)為焦點(diǎn)的拋物線方程是y2=8x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{x,-1≤x<0}\\{{x}^{2},0≤x<1}\end{array}\right.$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$.則方程f(x)=g(x)在區(qū)間[-3,7]上的所有實(shí)數(shù)根之和最接近下列哪個(gè)數(shù)( 。
A.10B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直,則實(shí)數(shù)m=0或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若${log_{\frac{4}{5}}}a$<1,則a的取值范圍是($\frac{4}{5},+∞$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系中,已知兩點(diǎn)A(x1,y1),B(x2,y2);x1,x2是一元二次方程2x2-2ax+a2-4=0兩個(gè)不等實(shí)根,且A、B兩點(diǎn)都在直線y=-x+a上.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$;
(2)a為何值時(shí)$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)當(dāng)x>3時(shí),求函數(shù)y=$\frac{2{x}^{2}}{x-3}$的最小值.
(2)若x2-2ax+2≥0在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線x-2y+2=0與圓C:x2+y2-4y+m=0相交,截得的弦長為$\frac{2\sqrt{5}}{5}$.
(1)求圓C的方程;
(2)過原點(diǎn)O作圓C的兩條切線,與函數(shù)y=x2的圖象相交于M、N兩點(diǎn)(異于原點(diǎn)),證明:直線MN與圓C相切;
(3)若函數(shù)y=x2圖象上任意三個(gè)不同的點(diǎn)P、Q、R,且滿足直線PQ和PR都與圓C相切,判斷線QR與圓C的位置關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案