15.若${log_{\frac{4}{5}}}a$<1,則a的取值范圍是($\frac{4}{5},+∞$).

分析 把不等式兩邊化為同底數(shù),然后利用對(duì)數(shù)函數(shù)的性質(zhì)得答案.

解答 解:由${log_{\frac{4}{5}}}a$<1=$lo{g}_{\frac{4}{5}}\frac{4}{5}$,得a$>\frac{4}{5}$.
∴a的取值范圍是($\frac{4}{5},+∞$).
故答案為:($\frac{4}{5},+∞$).

點(diǎn)評(píng) 本題考查對(duì)數(shù)不等式的解法,考查了對(duì)數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},
求A∩B,(CUA)∩(CUB),(A∩B)∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)對(duì)于函數(shù)f(x),g(x),已知f(6)=5,g(6)=4,f′(6)=3,g′(6)=1.如果h(x)=f(x)•g(x)-1,求h′(6)的值;
(2)直線y=$\frac{1}{2}$x+b能作為函數(shù)f(x)=sinx圖象的切線嗎?若能,求出切點(diǎn)坐標(biāo);若不能,簡(jiǎn)述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在長(zhǎng)方體ABCD-A′B′C′D′中,P、R分別為BC、CC′上的動(dòng)點(diǎn),當(dāng)點(diǎn)P,R滿足什么條件時(shí),PR∥平面AB′D′?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比λ;
(1)設(shè)圓C0:x2+y2=1,求過(guò)P(2,0)的直線關(guān)于圓C0的距離比λ=$\sqrt{3}$的直線方程;
(2)若圓C與y軸相切于點(diǎn)A(0,3),且直線y=x關(guān)于圓C的距離比λ=$\sqrt{2}$,求此圓C的方程;
(3)是否存在點(diǎn)P,使過(guò)P的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓C1:(x+1)2+y2=1與C2:(x-3)2+(y-3)2=4的距離比始終相等?若存在,求出相應(yīng)的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.直線Ax+3y+C=0與直線2x-3y+4=0的交點(diǎn)在y軸上,則C的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知等比數(shù)列{an}的首項(xiàng)a1=1,公比為x(x>0),其前n項(xiàng)和為記為Sn,則函數(shù)$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$的解析式為$f(x)=\left\{{\begin{array}{l}1&{0<x≤1}\\{\frac{1}{x}}&{x>1}\end{array}}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在復(fù)平面內(nèi)復(fù)數(shù)z=$\frac{ai+1}{1-i}$(a>0),已知|z|=1則$\overline{z}$=( 。
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=ax-1+2(a>0且a≠1)的圖象一定經(jīng)過(guò)點(diǎn)( 。
A.(0,1)B.(0,3)C.(1,2)D.(1,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案