分析 (1)由題意可得:n=log2bn,解得bn=2n.Sn=n2+2n,當(dāng)n≥2時(shí),an=Sn-Sn-1,即可得出an.
(2)f(b2n-1)=$lo{g}_{2}{2}^{2n-1}$=2n-1.可得Cn=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂項(xiàng)求和”即可得出.
解答 解:(1)由題意可得:n=log2bn,解得bn=2n.
Sn=n2+2n,當(dāng)n≥2時(shí),Sn-1=(n-1)2+2(n-1),
∴an=Sn-Sn-1=2n+1.
當(dāng)n=1時(shí)也成立,
∴an=2n+1.
(2)f(b2n-1)=$lo{g}_{2}{2}^{2n-1}$=2n-1.
Cn=$\frac{1}{{{a_n}•f({b_{2n-1}})}}$=$\frac{1}{(2n+1)(2n-1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數(shù)列{Cn}的前n項(xiàng)和Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
點(diǎn)評(píng) 本題考查了指數(shù)與對(duì)數(shù)的運(yùn)算性質(zhì)、數(shù)列的遞推關(guān)系、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∧q是真命題 | B. | p∨q是假命題 | C. | ?p是假命題 | D. | ¬q是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$ | B. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$ | C. | $-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$ | D. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 4個(gè) | D. | 6個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 86.5,86.7 | B. | 88,86.7 | C. | 88,86.8 | D. | 86,5,86.8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com