10.如圖是一個(gè)算法的流程圖,它最后輸出的k值為30.

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=21+22+23+…+229的值,并輸出,從而得解.

解答 解:模擬執(zhí)行程序框圖,可得
k=1,S=0
滿足條件S<30,S=21,k=2
滿足條件S<30,S=21+22,k=3

滿足條件S<30,S=21+22+…+229,k=30
不滿足條件S<30,退出循環(huán),輸出k的值為30.
故答案為:30.

點(diǎn)評(píng) 算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.寫出程序結(jié)果也是重要的考試題型,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)(0.064)${\;}^{\frac{1}{3}}$-(-$\frac{7}{8}$)0+(25)${\;}^{\frac{2}{5}}$+($\frac{1}{16}$)0.75
(2)$lg500+lg\frac{8}{5}-\frac{1}{2}lg64+50{({lg2+lg5})^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.對于任意x∈R,函數(shù)f(x)=x2-2x-|x-1-a|-|x-2|+4的值非負(fù),則實(shí)數(shù)a的最小值為( 。
A.-$\frac{11}{8}$B.-5C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.以A表示值域?yàn)镽的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)φ(x)組成的集合:對于函數(shù)φ(x),存在一個(gè)正數(shù)M,使得函數(shù)φ(x)的值域包含于區(qū)間[-M,M].例如,當(dāng)φ1(x)=x3,φ2(x)=sinx時(shí),φ1(x)∈A,φ2(x)∈B.現(xiàn)有如下命題:
①設(shè)函數(shù)f(x)的定義域?yàn)镈,則“f(x)∈A”的充要條件是“?b∈R,?a∈D,f(a)=b”;
②函數(shù)f(x)∈B的充要條件是f(x)有最大值和最小值;
③若函數(shù)f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,則f(x)+g(x)∉B
④若函數(shù)$f(x)=aln({x+2})+\frac{x}{{{x^2}+1}}({x>-2,a∈R})$有最大值,則f(x)∈B.其中的真命題為( 。
A.①③B.②③C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.命題“若$\sqrt{x+1}+|{y-1}|=0$,則x=-1或y=1”的否命題為“若$\sqrt{x+1}+|y-1|≠0$,則x≠-1且y≠1”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=$\left\{\begin{array}{l}{(3-a)x,x∈(-∞,2]}\\{{a}^{x-1},x∈(2,+∞)}\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.(1,3)B.(1,2)C.[2,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.平行于直線2x+y+1=0且與圓(x-1)2+y2=5相切的直線的方程是2x+y+3=0或2x+y-7=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知F1,F(xiàn)2為雙曲線C:x2-$\frac{y^2}{3}$=1的左、右焦點(diǎn),點(diǎn)P在C上,|PF1|=2|PF2|,則cos∠F1PF2=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\frac{2b-c}{a}=\frac{cosC}{cosA}$
(Ⅰ)求角A的大;
(Ⅱ)若a=$\sqrt{3}$,求b2+c2的最大值.

查看答案和解析>>

同步練習(xí)冊答案