分析 (1)化簡an=$\sqrt{n+1}$-$\sqrt{n}$,從而利用裂項求和法求其前n項和,從而解方程即可;
(2)由an=(n+$\frac{1}{2}$)+$\frac{1}{{2}^{n}}$,分等差數(shù)列與等比數(shù)列求其前n項和.
解答 解:(1)∵an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}$-$\sqrt{n}$,
∴Sn=($\sqrt{2}$-1)+($\sqrt{3}$-$\sqrt{2}$)+(2-$\sqrt{3}$)+…+($\sqrt{n+1}$-$\sqrt{n}$)
=$\sqrt{n+1}$-1=9,
故n+1=100,
故n=99;
(2)∵an=(n+$\frac{1}{2}$)+$\frac{1}{{2}^{n}}$,
∴Sn=[(1+$\frac{1}{2}$)+$\frac{1}{2}$]+[(2+$\frac{1}{2}$)+$\frac{1}{4}$]+[(3+$\frac{1}{2}$)+$\frac{1}{8}$]+…+[(n+$\frac{1}{2}$)+$\frac{1}{{2}^{n}}$]
=[(1+$\frac{1}{2}$)+(2+$\frac{1}{2}$)+(3+$\frac{1}{2}$)+…+(n+$\frac{1}{2}$)]+($\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{n}}$)
=$\frac{1+\frac{1}{2}+n+\frac{1}{2}}{2}$×n+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$
=$\frac{{n}^{2}+2n}{2}$+1-$\frac{1}{{2}^{n}}$.
點評 本題考查了裂項求和法的應(yīng)用及分類求和法的應(yīng)用,同時考查了等比數(shù)列與等差數(shù)列的求和公式的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C${\;}_{12}^{8}$ | B. | C${\;}_{12}^{8}$24 | C. | -C${\;}_{12}^{9}$ | D. | -C${\;}_{12}^{9}$23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{12}{25}$ | B. | $\frac{12}{25}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | -$\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com