1.在各項均為正數(shù)的等比數(shù)列{an}中,a2,a4+2.a(chǎn)5成等差數(shù)列,a1=2,Sn是數(shù)列{an}的前n項的和,則S10-S4=( 。
A.1008B.2016C.2032D.4032

分析 利用等差數(shù)列的性質(zhì)及等比數(shù)列的通項公式求出公比,由此利用等比數(shù)列前n項和公式能求出結(jié)果.

解答 解:∵在各項均為正數(shù)的等比數(shù)列{an}中,a2,a4+2.a(chǎn)5成等差數(shù)列,a1=2,
∴2(2q3+2)=2q+2q4,
∴2(q3+1)=q(q3+1),
由q>0,解得q=2,
∴S10-S4=$\frac{2(1-{2}^{10})}{1-2}$-$\frac{2(1-{2}^{4})}{1-2}$=2016.
故選:B.

點(diǎn)評 本題考查等比數(shù)列前n項和,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列和等比數(shù)列的通項公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線1的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)$+\sqrt{2}$=0,直線1與x,y軸分別交于點(diǎn)A,B,點(diǎn)P是曲線C上任意一點(diǎn).
(1)求弦OP的中點(diǎn)M的軌跡的直角坐標(biāo)方程.
(2)求點(diǎn)P到直線AB距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若p,q是奇數(shù).則方程x2+px+q=0不可能有整數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知奇函數(shù)f(x)是以4為周期的周期函數(shù),則f(2)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=x|x|是( 。
A.偶函數(shù)且增函數(shù)B.偶函數(shù)且減函數(shù)C.奇函數(shù)且增函數(shù)D.奇函數(shù)且減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)拋物線y=ax2+bx+c(a>0)與x軸有兩個交點(diǎn)A,B,頂點(diǎn)為C,設(shè)△=b2-4ac,∠ACB=θ,則cosθ=( 。
A.$\frac{△-4}{△+4}$B.$\frac{\sqrt{△}-2}{\sqrt{△}+2}$C.$\frac{△+4}{△-4}$D.$\frac{\sqrt{△}+2}{\sqrt{△}-2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.確定下列各三角函數(shù)值的正負(fù)號:
(1)sin170°;
(2)cos(-218°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在正方體ABCD-A1B1C1D1中,E、F分別為AB、C1D1的中點(diǎn),則A1B1與平面A1EF夾角的正弦值為( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{6}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在棱長為1的正方體ABCD-A1B1C1D1中.
(1)求證:AC1⊥B1C;
(2)求證:AC1⊥CB1D1

查看答案和解析>>

同步練習(xí)冊答案