A. | 1008 | B. | 2016 | C. | 2032 | D. | 4032 |
分析 利用等差數(shù)列的性質(zhì)及等比數(shù)列的通項公式求出公比,由此利用等比數(shù)列前n項和公式能求出結(jié)果.
解答 解:∵在各項均為正數(shù)的等比數(shù)列{an}中,a2,a4+2.a(chǎn)5成等差數(shù)列,a1=2,
∴2(2q3+2)=2q+2q4,
∴2(q3+1)=q(q3+1),
由q>0,解得q=2,
∴S10-S4=$\frac{2(1-{2}^{10})}{1-2}$-$\frac{2(1-{2}^{4})}{1-2}$=2016.
故選:B.
點(diǎn)評 本題考查等比數(shù)列前n項和,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列和等比數(shù)列的通項公式的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 偶函數(shù)且增函數(shù) | B. | 偶函數(shù)且減函數(shù) | C. | 奇函數(shù)且增函數(shù) | D. | 奇函數(shù)且減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{△-4}{△+4}$ | B. | $\frac{\sqrt{△}-2}{\sqrt{△}+2}$ | C. | $\frac{△+4}{△-4}$ | D. | $\frac{\sqrt{△}+2}{\sqrt{△}-2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{6}}{4}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com