13.已知命題p:關(guān)于x的不等式x2+(a-1)+a2<0有實(shí)數(shù)解,命題q:“y=(2a2-a)x為增函數(shù).若“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

分析 求出命題p,q為真命題的等價(jià)條件,結(jié)合復(fù)合命題真假關(guān)系進(jìn)行求解即可.

解答 解:若x2+(a-1)+a2<0有實(shí)數(shù)解,則判別式△=(a-1)2-4a2≥0,
即3a2+2a-1≤0,得-1≤a≤$\frac{1}{3}$;即p:-1≤a≤$\frac{1}{3}$;
若y=(2a2-a)x為增函數(shù),則2a2-a>1,即2a2-a-1>0,得a>1或a<-$\frac{1}{2}$,
即q:a>1或a<-$\frac{1}{2}$;
若p∧q為真命題,則p,q同時(shí)為真命題,
則$\left\{\begin{array}{l}{-1≤a≤\frac{1}{3}}\\{a>1或a<-\frac{1}{2}}\end{array}\right.$,得-1≤a<-$\frac{1}{2}$,
則當(dāng)“p∧q”為假命題時(shí),a≥-$\frac{1}{2}$或a<-1.

點(diǎn)評 本題主要考查復(fù)合命題真假關(guān)系的應(yīng)用,根據(jù)條件先求出命題p,q為真命題時(shí)的等價(jià)條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)α,β,γ是三個(gè)互不重合的平面,m,n是兩條不重合的直線,下列命題中正確的序號是④;
①若α⊥β,β⊥γ,則α⊥γ; 
②若m∥α,n∥β,α⊥β,則m⊥n;
③若α⊥β,m⊥α,則m∥β;
④若α∥β,m?β,m∥α,則m∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象.若在區(qū)間$[{-\frac{π}{2},\frac{π}{2}}]$上隨機(jī)取一個(gè)數(shù)x,則事件“g(x)≥1”發(fā)生的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=x2+3f′(1)x+2,則f(1)=(  )
A.-2B.2C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=sin(2x+$\frac{π}{6}$)+1,x∈R.
(1)用五點(diǎn)法作出函數(shù)在長度為一個(gè)周期的閉區(qū)間上的簡圖.
(2)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間.
(3)函數(shù)f(x)的圖象可以由函數(shù)y=sin 2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{4-{2}^{-x},x≤0}\end{array}\right.$,若關(guān)于x的方程f(2x2+x)=a恰有6個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是[2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若長方體的一個(gè)頂點(diǎn)上三條棱長分別是1、2、2,且它的八個(gè)頂點(diǎn)都在同一球面上,則這個(gè)球的表面積是( 。
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在函數(shù)f(x)=blnx+(x-1)2(x>0)的圖象上任取兩個(gè)不同點(diǎn)P(x1,y1),Q(x2,y2)(x1>x2),總能使得f(x1)-f(x2)≥3(x1-x2),則實(shí)數(shù)b的取值范圍為[$\frac{25}{8}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|0<x<3},B={x|2x-1>0,x∈Z},則A∩B=( 。
A.($\frac{1}{2}$,3)B.{1,2,3}C.{1,2}D.{2,3}

查看答案和解析>>

同步練習(xí)冊答案