分析 (1)由條件利用二項式展開式的通項公式、二項式定理化簡等式的左邊,即可證得結(jié)論.
(2)由條件利用二項式展開式的通項公式、二項式定理化簡等式的左邊,即可證得結(jié)論.
解答 (1)證明:∵C${\;}_{n}^{0}$+7C${\;}_{n}^{1}$+72C${\;}_{n}^{2}$+…+7nC${\;}_{n}^{n}$=(1+7)n=8n=23n ,∴C${\;}_{n}^{0}$+7C${\;}_{n}^{1}$+72C${\;}_{n}^{2}$+…+7nC${\;}_{n}^{n}$=23n 成立.
(2)證明:∵2n-C${\;}_{n}^{1}$•2n-1+C${\;}_{n}^{2}$•2n-2+…+(-1)n-1C${\;}_{n}^{n-1}$•2+(-1)n =(2-1)n=1,
∴2n-C${\;}_{n}^{1}$•2n-1+C${\;}_{n}^{2}$•2n-2+…+(-1)n-1C${\;}_{n}^{n-1}$•2+(-1)n=1.
點評 本題主要考查二項式定理的應(yīng)用,二項式展開式的通項公式,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{π}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com