分析 由條件利用同角三角函數(shù)的基本關(guān)系求得sin(α+β)和sinα的值,再利用兩角差的余弦公式,求得cosβ=cos[(α+β)-α]的值.
解答 解:由0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,可得0<α+β<π.
∵cos(α+β)=-$\frac{47}{51}$,∴sin(α+β)=$\sqrt{{1-cos}^{2}(α+β)}$=$\frac{14\sqrt{2}}{51}$.
∵cosα=$\frac{1}{17}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{12\sqrt{2}}{17}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-$\frac{47}{51}$•$\frac{1}{17}$+$\frac{14\sqrt{2}}{51}$•$\frac{12\sqrt{2}}{17}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.
點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{(e-1)π}{2}$ | B. | $\frac{(e-1){π}}{3}$ | C. | $\frac{(e-1)π}{4}$ | D. | $\frac{(e-1)π}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{\sqrt{3}}{2}$,1] | B. | [$\frac{\sqrt{3}-\sqrt{2}}{2}$,1] | C. | [$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\frac{\sqrt{3}+\sqrt{2}}{2}$] | D. | [$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\sqrt{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com