19.設(shè)a∈R,若函數(shù)y=eax+3x,x∈R有大于零的極值點(diǎn),則(  )
A.$a<-\frac{1}{3}$B.$a>-\frac{1}{3}$C.a<-3D.a>-3

分析 根據(jù)題意,問題可以轉(zhuǎn)化為f′(x)=3+aeax=0有正根,通過討論此方程根為正根,求得參數(shù)的取值范圍.

解答 解:設(shè)f(x)=eax+3x,則f′(x)=3+aeax,
∵函數(shù)在x∈R上有大于零的極值點(diǎn),
∴f′(x)=3+aeax=0有正根,
①當(dāng)a≥0時(shí),f′(x)=3+aeax>0,
∴f′(x)=3+aeax=0無實(shí)數(shù)根,
∴函數(shù)y=eax+3x,x∈R無極值點(diǎn);
②當(dāng)a<0時(shí),由f′(x)=3+aeax=0,解得x=$\frac{1}{a}$ln(-$\frac{3}{a}$),
當(dāng)x>$\frac{1}{a}$ln(-$\frac{3}{a}$)時(shí),f′(x)>0,當(dāng)x<$\frac{1}{a}$ln(-$\frac{3}{a}$)時(shí),f′(x)<0,
∴x=$\frac{1}{a}$ln(-$\frac{3}{a}$)為函數(shù)的極值點(diǎn),
∴$\frac{1}{a}$ln(-$\frac{3}{a}$)>0,解得a<-3,
∴實(shí)數(shù)a的取值范圍是a<-3.
故選:C.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值,解題時(shí)要注意極值點(diǎn)即為導(dǎo)函數(shù)等于0的根,從而可以將問題轉(zhuǎn)化為根的存在性問題進(jìn)行解決.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.焦點(diǎn)在x軸,離心率$\frac{\sqrt{5}}{5}$橢圓的短軸為AB,M為橢圓上一點(diǎn)(不與四個(gè)端點(diǎn)重合),MA,MB交x軸于點(diǎn)E,F(xiàn),若|OE|•|OF|=5,則橢圓的短軸長(zhǎng)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在銳角△ABC中,AB=2,AC=$\sqrt{7}$,E是BC邊上的點(diǎn).
(1)若AE平分角∠BAC,求$\frac{EC}{BE}$的值;
(2)若AE=$\sqrt{6}$,∠AEC=135°,求角B及BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=$\frac{2}{x}$+lnx的極小值點(diǎn)為x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四面體A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2$\sqrt{2}$.M是AD的中點(diǎn),P是BM的中點(diǎn).
(Ⅰ)求證:平面ABC⊥平面ADC;
(Ⅱ)若點(diǎn)Q在線段AC上,且滿足AQ=3QC,求證:PQ∥平面BCD;
(Ⅲ)若∠BDC=60°,求二面角C-BM-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠DAB為直角,AB∥CD,AD=CD=2AB,E,F(xiàn)分別為PC,CD的中點(diǎn).
(1)證明:AB⊥平面BEF;
(2)設(shè)PA=kAB,若平面EBD與平面BDC的夾角是大于45°的銳角,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=120°
(1)求直線AD與平面BCD所成角的大。
(2)求二面角A-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.橢圓D:$\frac{{x}^{2}}{50}+\frac{{y}^{2}}{25}=1$與圓M:x2+(y-m)2=9(m∈R),雙曲線G與橢圓D有相同的焦點(diǎn),它的兩條漸近線恰好與圓M相切,當(dāng)m=5時(shí),求雙曲線G的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線y=-x+1與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩點(diǎn),且以AB為直徑的圓經(jīng)過點(diǎn)O(其中O為坐標(biāo)原點(diǎn))當(dāng)橢圓C的離心率e$∈[\frac{1}{2},\frac{\sqrt{3}}{2}]$時(shí)橢圓C的長(zhǎng)軸長(zhǎng)的最大值是( 。
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案