如圖,在△ABC中,
BD
=
2DC
AD
=m
AB
+n
AC
,則m=
 
,n=
 

考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:
BD
AB
,
AC
表示,
AD
=
AB
+
BD
=
AB
+
2
3
BC
=
AB
+
2
3
(
AC
-
AB)
=
1
3
AB
+
2
3
AC
,即可求出m、n.
解答: 解:
AD
=
AB
+
BD
=
AB
+
2
3
BC
=
AB
+
2
3
(
AC
-
AB)
=
1
3
AB
+
2
3
AC
,
∴m=
1
3
,n=
2
3

故答案為:
1
3
,
2
3
點(diǎn)評(píng):本題主要考查平面向量加法、減法的運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了加強(qiáng)對(duì)H7N9的防控,某養(yǎng)鴨場(chǎng)要圍成相同面積的長(zhǎng)方形鴨籠四間(無(wú)蓋),如圖所示,一面可利用原有的墻,其他各面用鐵絲網(wǎng)圍成.
(Ⅰ)現(xiàn)有可圍72m長(zhǎng)的鐵絲網(wǎng),則每間鴨籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使每間鴨籠面積最大?
(Ⅱ)若使每間鴨籠面積為24m2,則每間鴨籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使圍成四間鴨籠的鐵絲網(wǎng)總長(zhǎng)最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax(x≥0)
x+1(x<0)
(a>0且a≠1);
(1)若f(1)=2,求a的值,并作出f(x)的圖象;
(2)當(dāng)x∈R時(shí),恒有f(x)≤f(0),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)滿足f(log2x)=
2(x2-1)
3x

(Ⅰ)求函數(shù)f(x)的表達(dá)式并討論其單調(diào)性;
(Ⅱ)若對(duì)任意實(shí)數(shù)x∈[-1,
1
2
],都有|f(x)|的值不大于a2+3a+3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若
Sn
Tn
=
2n+9
7n+3
,則
a7
b7
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y=
1
2
x+1,則f(1)+f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知銳角△ABC中內(nèi)角A、B、C的對(duì)邊分別為a、b、c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(Ⅰ)求角C的值;
(Ⅱ)設(shè)函數(shù)f(x)=sin(ωx-
π
6
)-cosωx(ω>0),且f(x)圖象上相鄰兩最高點(diǎn)間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某旅游景點(diǎn)預(yù)計(jì)2013年1月份起前x個(gè)月的旅游人數(shù)的和p(x)(單位:萬(wàn)人)與x的關(guān)系近似地滿足p(x)=
1
2
x(x+1).(39-2x),(x∈N*,且x≤12).已知第x月的人均消費(fèi)額q(x)(單位:元)與x的近似關(guān)系是
q(x)=
35-2x(x∈N*,且1≤x≤6)
160
x
(x∈N*,且7≤x≤12)

(Ⅰ)寫出2013年第x月的旅游人數(shù)f(x)(單位:人)與x的函數(shù)關(guān)系式;
(Ⅱ)試問(wèn)2013年第幾月旅游消費(fèi)總額最大,最大月旅游消費(fèi)總額為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程
|x|
x+2
=kx有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案