17.△ABC的一邊長(zhǎng)為8,周長(zhǎng)為20,求頂點(diǎn)A的軌跡方程.

分析 由題意可得AB+AC=12>BC=8,故頂點(diǎn)A的軌跡是以B、C為焦點(diǎn)的橢圓,除去與x軸的交點(diǎn),利用橢圓的定義和簡(jiǎn)單性質(zhì)求出a、b 的值,即得頂點(diǎn)A的軌跡方程.

解答 解:∵△ABC的一邊長(zhǎng)為8,周長(zhǎng)為20,不妨|BC|=8,且△ABC的周長(zhǎng)等于20,
∴AB+AC=12>BC=8,故頂點(diǎn)A的軌跡是以B、C為焦點(diǎn)的橢圓,除去與x軸的交點(diǎn),
∴2a=12,a=6,c=4,
∴b2=20,故頂點(diǎn)A的軌跡方程為$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1$(y≠0)或$\frac{{y}^{2}}{36}+\frac{{x}^{2}}{20}=1$(x≠0).
故答案為:$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1$(y≠0)或$\frac{{y}^{2}}{36}+\frac{{x}^{2}}{20}=1$(x≠0).

點(diǎn)評(píng) 本題考查橢圓的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,注意軌跡方程中y≠0,這是解題的易錯(cuò)點(diǎn).屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.拋物線y2=-4px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,則p表示( 。
A.F到l的距離B.F到y(tǒng)軸的距離C.F點(diǎn)的橫坐標(biāo)D.F到l的距離的$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.過(guò)點(diǎn)A(-2,3),B(-2,-5),且圓心在直線x-2y-3=0上的圓的標(biāo)準(zhǔn)方程是(x-1)2+(y+1)2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.三角形ABC中,A+C=2B,tanAtanC=2+$\sqrt{3}$,則A=45°或75°,B=60°,C=75°或45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知θ為銳角,sin2θ=-$\frac{7}{9}$,則sin($\frac{π}{4}$+θ)=(  )
A.$±\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.±$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如果橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1上一點(diǎn)P到焦點(diǎn)F1的距離是8,則P到另一焦點(diǎn)F2的距離是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.己知數(shù)列{log2(an-1)}為等差數(shù)列,且a1=3,a2=5.
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)求$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知實(shí)數(shù)x,y滿足(x-2)2+y2=3,則x2+(y-1)2的最大值為2$\sqrt{15}$+8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=sin(-2x+$\frac{π}{4}$)(x∈R)的值域?yàn)閇-1,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案