8.如圖,測(cè)量河對(duì)岸的旗桿高AB時(shí),選與旗桿底B在同一水平面內(nèi)的兩個(gè)測(cè)點(diǎn)C與D.測(cè)得∠BCD=75°,∠BDC=60°,CD=2米,并在點(diǎn)C測(cè)得旗桿頂A的仰角為60°,則旗桿高AB為( 。
A.10米B.2$\sqrt{6}$米C.$2\sqrt{3}$米D.$3\sqrt{2}$米

分析 在△CBD中根據(jù)三角形的內(nèi)角和定理,求出∠CBD=180°-∠BCD-∠BDC=45°,從而利用正弦定理求出BC.然后在Rt△ABC中,根據(jù)三角函數(shù)的定義加以計(jì)算,可得旗桿AB的高度.

解答 解:∵△BCD中,∠BCD=75°,∠BDC=60°,
∴∠CBD=180°-∠BCD-∠BDC=45°,
在△CBD中,CD=2米,根據(jù)正弦定理可得BC=$\frac{CD•sin∠BDC}{sin∠CBD}$=$\sqrt{6}$米,
∵Rt△ABC中,∠ACB=60°,
∴AB=BC•tan∠ACB=$\sqrt{6}$•tan60°=3$\sqrt{2}$,即旗桿高,3$\sqrt{2}$米.
故選:D.

點(diǎn)評(píng) 本題給出實(shí)際應(yīng)用問題,求棋桿AB的高度.著重考查了三角形內(nèi)角和定理、利用正弦定理解三角形和三角函數(shù)的定義等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(x,4),若$\overrightarrow{a}$$•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|,則x=( 。
A.-2B.2C.0D.-2或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若圓心為(3,1)的圓與x軸相切,則該圓的方程是( 。
A.x2+y2-2x-6y+9=0B.x2+y2+6x+2y+9=0C.x2+y2-6x-2y+9=0D.x2+y2+2x+6y+9=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=3sin2x+2sinxcosx+cos2x-2的單調(diào)遞減區(qū)間是( 。
A.$[kπ+\frac{3π}{8},kπ+\frac{7π}{8}],k∈Z$B.$[2kπ+\frac{3π}{8},2kπ+\frac{7π}{8}],k∈Z$
C.$[2kπ-\frac{π}{8},2kπ+\frac{3π}{8}],k∈Z$D.$[kπ-\frac{π}{8},kπ+\frac{3π}{8}],k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓的長(zhǎng)軸長(zhǎng)為10,兩焦點(diǎn)F1,F(xiàn)2的坐標(biāo)分別為(3,0)和(-3,0)
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)若P為短軸的一個(gè)端點(diǎn),求三角形F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個(gè)幾何體的三視圖是如圖所示的邊長(zhǎng)為2的正方形,其中P,Q,S,T為各邊的中點(diǎn),則此幾何體的表面積是( 。
A.21B.$\frac{43}{2}$C.$\frac{45}{2}$D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ln x,F(xiàn)(x)=x-$\frac{a}{x}$+$\frac{lnx}{x}$-a,
(1)求函數(shù)f(x)在A(1,0)處的切線方程.
(2)若F(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lg(x+1)-lg(x-1).
(Ⅰ)求f(x)的定義域,判斷并用定義證明其在定義域上的單調(diào)性;
(Ⅱ)若a>0,解關(guān)于x的不等式f(a2x-2ax)<lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一個(gè)袋中有4個(gè)大小相同的小球,其中紅球1個(gè),白球2個(gè),黑球1個(gè),現(xiàn)從袋中取出2球.
(Ⅰ)求取出2球都是白球的概率;
(Ⅱ)若取1個(gè)紅球記2分,取1個(gè)白球記1分,取1個(gè)黑球記0分,求取出兩球分?jǐn)?shù)之和為2的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案