17.等差數(shù)列{an}的公差為2,若a1,a2,a4成等比數(shù)列,則{an}的前n項(xiàng)和Sn=(  )
A.n(n+1)B.n(n-1)C.$\frac{n(n+1)}{2}$D.$\frac{n(n-1)}{2}$

分析 由等比數(shù)列的中項(xiàng)的性質(zhì),結(jié)合等差數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)為2,再由等差數(shù)列的求和公式,即可得到所求和.

解答 解:a1,a2,a4成等比數(shù)列,可得
a1a4=a22,
即有a1(a1+3d)=(a1+d)2
即為a1=d=2,
則{an}的前n項(xiàng)和Sn=na1+$\frac{1}{2}$n(n-1)d
=2n+n(n-1)=n(n+1).
故選A.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和求和公式,同時(shí)考查等比數(shù)列的中項(xiàng)的性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合 A={x|0≤x≤5,x∈Z},B={x|$\frac{1}{2}$≤2x≤4,x∈Z}.
(1)用列舉法表示集合A和B;
(2)求A∩B和A∪B;
(3)若集合C=(-∞,a),B∩C中僅有3個(gè)元素,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.從1,2,3,4,5這5個(gè)數(shù)中,隨機(jī)抽取2個(gè)不同的數(shù),則這2個(gè)數(shù)的和為偶數(shù)的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=x-$\frac{1}{x+1}$,g(x)=x2-2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{15}{8}$,+∞)B.[3,+∞)C.[$\frac{9}{4}$,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求經(jīng)過點(diǎn)M(2,6),且在兩坐標(biāo)軸上的截距之和為15的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若不等式2x2+ax+b<0的解集為{x|-3<x<2},則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\frac{1}{2}$x2-x,則f(x)的單調(diào)遞增區(qū)間是( 。
A.(-∞,-1)和(0,+∞)B.(0,+∞)C.(-1,0)和(1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},x>1}\\{4x-1,x≤1}\end{array}\right.$,則滿足f(f(a))=3f(a)的實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{1}{2}$,+∞)B.[$\frac{2}{3}$,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知存在實(shí)數(shù)a,b,c和α,β,γ使得f(x)=x3+ax2+bx+c=(x-α)(x-β)(x-γ),
(1)若a=b=c=-1,求α222的值;
(2)當(dāng)$α-β=\frac{1}{3}且γ>\frac{1}{2}(α+β)$時(shí),若存在實(shí)數(shù)m,n使得f(m+x)+f(m-x)=2n對(duì)任意x∈R恒成立,求f(m)的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案