9.四棱錐P-ABCD及其正(主)視圖和俯視圖如圖所示.
(1)求四棱錐P-ABCD的體積;
(2)求四棱錐P-ABCD的側(cè)面積.

分析 (1)由三視圖可知棱錐底面ABCD是邊長為2的正方形,棱錐的高為2,代入體積公式計算求得棱錐的體積.
(2)作PO⊥平面ABCD,則O為正方形ABCD的中心,PO=2,作OE⊥AB,垂足為E,連結(jié)PE,則可由勾股定理求出棱錐的斜高,進(jìn)而計算出側(cè)面積.

解答 解:(1)由俯視圖可知棱錐的底面ABCD是邊長為2的正方形,由正視圖可知棱錐的高為2,
∴V=$\frac{1}{3}×{2}^{2}×2$=$\frac{8}{3}$.
(2)由俯視圖可知該棱錐為正四棱錐,作PO⊥平面ABCD,則O為正方形ABCD的中心,PO=2,
作OE⊥AB,垂足為E,連結(jié)PE,則OE=$\frac{1}{2}$AD=1,∴PE=$\sqrt{P{O}^{2}+O{E}^{2}}$=$\sqrt{5}$.
∴S△PAB=$\frac{1}{2}AB•PE$=$\sqrt{5}$.
∴四棱錐P-ABCD的側(cè)面積S=4S△PAB=4$\sqrt{5}$.

點(diǎn)評 本題考查了空間幾何體三視圖與體積和面積計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某商店每天以每瓶5元的價格從奶廠購進(jìn)若干瓶24小時新鮮牛奶,然后以每瓶8元的價格出售,如果當(dāng)天該牛奶賣不完,則剩下的牛奶就不再出售,由奶廠以每瓶2元的價格回收處理.
(1)若商場一天購進(jìn)20瓶牛奶,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:瓶,n∈N)的函數(shù)解析式;(2)商店記錄了50天該牛奶的日需求量(單位:瓶),整理得下表:
日需求量n(瓶)17181920212223
頻數(shù)558121064
假設(shè)商店一天購進(jìn)20瓶牛奶,以50天記錄的各需求量的頻率作為各需求量發(fā)生概率,求當(dāng)天利潤低于60元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.求ax2+2x+1=0(a≠0,a∈R,x∈R)有一個正根和一個負(fù)根的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若x,y>0,則$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.高為4的直三棱柱被削去一部分后得到一個幾何體,它的直觀圖和三視圖中的側(cè)視圖、俯視圖如圖所示,則該幾何體的體積是原直三棱柱的體積的( 。
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上有一點(diǎn)P(x0,y0),其中${x}_{0}^{2}$=$\frac{{a}^{2}{c}^{2}-{a}^{2}^{2}}{{a}^{2}-^{2}}$,求離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l過定點(diǎn)(0,4),且與拋物線x2=4y相交于點(diǎn)A,B,點(diǎn)O為坐標(biāo)原點(diǎn).
(1)求證:OA⊥OB;
(2)若△OAB的面積為$12\sqrt{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點(diǎn)(2,$\sqrt{2}$)、($\sqrt{2}$,-$\sqrt{3}$)的橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在三棱錐P-ABC中,∠PAB=∠PAC=∠ABC=90°,M是PB的中點(diǎn),PA=AB=2.
(Ⅰ)求證:面PBC⊥面PAB;
(Ⅱ)若BC=1,求三棱錐A-PMC的體積.

查看答案和解析>>

同步練習(xí)冊答案