5.已知當(dāng)x≥0時(shí),不等式2ex-ax-2≥0恒成立,則a的取值范圍是( 。
A.(0,2]B.(-∞,0]C.[2,+∞)D.(-∞,2]

分析 由不等式轉(zhuǎn)化為恒成立問題,求最值,通過求導(dǎo)確定單調(diào)性得到.

解答 解:∵當(dāng)x≥0時(shí),不等式2ex-ax-2≥0恒成立,
令h(x)=2ex-ax-2
只需h(x)min≥0即可.
∵h(yuǎn)(0)=0
h′(x)=2ex-a
∴a≤2時(shí),h′(x)≥0恒成立,
h(x)min=h(0)=0
符合條件.
故選:D

點(diǎn)評 本題考查由轉(zhuǎn)化思想,恒成立問題,通過求導(dǎo)確定單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列說法中:
①兩個(gè)有共同起點(diǎn)且相等的向量,其終點(diǎn)一定相同;
②若|$\overrightarrow{a}$|=|$\overrightarrow$|,則|$\overrightarrow{a}$=$\overrightarrow$;
③若非零向量$\overrightarrow{a},\overrightarrow$共線,則$\overrightarrow{a}=\overrightarrow$;
④向量$\overrightarrow{a}=\overrightarrow$,則向量$\overrightarrow{a},\overrightarrow$共線;
⑤由于零向量的方向不確定,故其不能與任何向量平行;
其中正確的序號(hào)為①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用反證法證明命題“設(shè)a,b為實(shí)數(shù),則方程x3+ax-b=0,至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是( 。
A.方程x3+ax-b=0沒有實(shí)根B.方程x3+ax-b=0至多有一個(gè)實(shí)根
C.方程x3+ax-b=0至多有兩個(gè)實(shí)根D.方程x3+ax-b=0恰好有兩個(gè)實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖為某校語言類專業(yè)N名畢業(yè)生的綜合測評成績(百分制)分布直方圖,已知80~90分?jǐn)?shù)段的人數(shù)為19.
(1)求該專業(yè)畢業(yè)總?cè)藬?shù)N和90~95分?jǐn)?shù)段內(nèi)的人數(shù)n;
(2)現(xiàn)欲將90~95分?jǐn)?shù)段內(nèi)的n名人分配到幾所學(xué)校,從中安排2人到甲學(xué)校去,若n人中僅有2名男生,求安排結(jié)果至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知正三棱錐S-ABC的六條棱長都為$\frac{4\sqrt{6}}{3}$,則它的外接球的體積為(  )
A.$\frac{32π}{3}$B.$\frac{32\sqrt{3}π}{3}$C.$\frac{64π}{3}$D.$\frac{64\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{1-lo{g}_{2}x,x>1}\end{array}\right.$,則滿足f(x)=2的x的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某學(xué)校為了對教師教學(xué)水平和教師管理水平進(jìn)行評價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對教師教學(xué)水平給出好評的學(xué)生人數(shù)為總數(shù)的60%,對教師管理水平給出好評的學(xué)生人數(shù)為總數(shù)的75%,其中對教師教學(xué)水平和教師管理水平都給出好評的有120人.
(1)填寫教師教學(xué)水平和教師管理水平評價(jià)的2×2列聯(lián)表:
對教師管理水平好評對教師管理水平不滿意合計(jì)
對教師教學(xué)水平好評
對教師教學(xué)水平不滿意
合計(jì)
問:是否可以在犯錯(cuò)誤概率不超過0.1%的前提下,認(rèn)為教師教學(xué)水平好評與教師管理水平好評有關(guān)、
(2)若將頻率視為概率,有4人參與了此次評價(jià),設(shè)對教師教學(xué)水平和教師管理水平全好評的人數(shù)為隨機(jī)變量X;
①求對教師教學(xué)水平和教師管理水平全好評的人數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知D、C、B三點(diǎn)在地面同一直線上,DC=a,從C、D兩點(diǎn)測得A的點(diǎn)仰角分別為α、β(α>β),則A點(diǎn)離地面的高AB等于( 。
A.$\frac{asinαsinβ}{sin(α-β)}$B.$\frac{asinαsinβ}{cos(α-β)}$C.$\frac{acosαcosβ}{sin(α-β)}$D.$\frac{acosαcosβ}{cos(α-β)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線y=x3+3x2-1在點(diǎn)(-1,1)處的切線方程是( 。
A.y=-3x+4B.y=-3x-2C.y=-4x+3D.y=4x-5

查看答案和解析>>

同步練習(xí)冊答案