17.已知cos(θ+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$,$θ∈(0,\frac{π}{2})$,則sin2θ=$\frac{4}{5}$.

分析 直接利用兩角和的余弦函數(shù)化簡(jiǎn)已知條件,利用平方關(guān)系式求解所求表達(dá)式即可.

解答 解:cos(θ+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$,$θ∈(0,\frac{π}{2})$,
可得$\frac{\sqrt{2}}{2}$(cosθ-sinθ)=-$\frac{\sqrt{10}}{10}$,
兩邊平方化簡(jiǎn)得:1-2cosθsinθ=$\frac{1}{5}$,
∴sin2θ=$\frac{4}{5}$.
故答案為:$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),二倍角公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.橢圓E:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的左頂點(diǎn)為A,點(diǎn)B,C是橢圓E上的兩個(gè)動(dòng)點(diǎn).若直線AB,AC的斜率乘積為定值-$\frac{1}{4}$,則動(dòng)直線BC恒過定點(diǎn)的坐標(biāo)為(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx+$\frac{a}{x+1}$.
(1)當(dāng)a=$\frac{9}{2}$時(shí),求f(x)在定義域上的單調(diào)區(qū)間;
(2)若f(x)在(0,+∞)上為增函數(shù),求a的取值范圍,并在此范圍下討論關(guān)于x的方程f(x)=x2-2x+3的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.正三棱臺(tái)的上、下底面的邊長(zhǎng)分別是3和6.
(1)若側(cè)面與底面所成的角為60°,求此三棱臺(tái)的體積;
(2)若側(cè)棱與底面所成的角為60°,求此三棱臺(tái)的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A={x|log2x<2},B={x|1<x<5},則A∪B=(  )
A.{x|x<5}B.{x|x>1}C.{x|0<x<5}D.{x|1<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)+2cos2x-1
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間,并說明可把f(x)圖象經(jīng)過怎樣的平移變換得到g(x)=sin2x的圖象.
(Ⅱ)若在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且a=1,b+c=2,f(A)=$\frac{1}{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)g(x)=$\frac{x}{lnx}$,f(x)=g(x)-ax.
(Ⅰ)求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若存在x1,x2∈[e,e2],(e=2.71828…是自然對(duì)數(shù)的底數(shù))使f(x1)≤f′(x2)+a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.求函數(shù)f(x)=$\sqrt{1-2cosx}$+ln(sinx-$\frac{\sqrt{2}}{2}$)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡(jiǎn):$\frac{cos(-α)•tan(7π+α)}{sin(π+α)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案