某單位組織職工去某地參觀學(xué)習(xí)需包車(chē)前往.甲車(chē)隊(duì)說(shuō):“如領(lǐng)隊(duì)買(mǎi)全票一張,其余人可享受7.5折優(yōu)惠”.乙車(chē)隊(duì)說(shuō):“你們屬團(tuán)體票,按原價(jià)的8折優(yōu)惠”.這兩車(chē)隊(duì)的原價(jià)、車(chē)型都是一樣的,試根據(jù)單位去的人數(shù),比較兩車(chē)隊(duì)的收費(fèi)哪家更優(yōu)惠.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專(zhuān)題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)兩家的政策,求出坐甲車(chē)需花y1元,坐乙車(chē)需花y2元,作差,即可得出結(jié)論.
解答: 解:設(shè)該單位有職工n人(n∈N*),全票價(jià)為x元,坐甲車(chē)需花y1元,坐乙車(chē)需花y2元,
則y1=x+
3
4
x(n-1)=
1
4
x+
3
4
xn,y2=
4
5
nx.
所以y1-y2
=
1
4
x+
3
4
xn-
4
5
nx
=
1
4
x-
1
20
nx
=
1
4
x(1-
n
5
).
當(dāng)n=5時(shí),y1=y2;
當(dāng)n>5時(shí),y1<y2;
當(dāng)0<n<5時(shí),y1>y2
因此當(dāng)單位去的人數(shù)為5時(shí),兩車(chē)隊(duì)收費(fèi)相同;多于5人時(shí),選甲車(chē)隊(duì)更優(yōu)惠;少于5人時(shí),選乙車(chē)隊(duì)更優(yōu)惠.
點(diǎn)評(píng):本題主要考查了學(xué)生列代數(shù)式在實(shí)際生活中的應(yīng)用.學(xué)生平時(shí)學(xué)習(xí)一定要結(jié)合實(shí)際.解決問(wèn)題的關(guān)鍵是讀懂題意,找到所求的量的等量關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p1:若函數(shù)f(x)=
1
x-a
在(-∞,0)上為減函數(shù),則a∈(-∞,0);命題p2:x∈(-
π
2
,
π
2
)是f(x)=tanx為增函數(shù)的必要不充分條件;命題p3:“a為常數(shù),?x∈R,f(x)=a2x2+ax+1>0”的否定是“a為變量,?x∈R,f(x)=a2x2+ax+1≤0”.以上三個(gè)命題中,真命題的個(gè)數(shù)是( 。
A、3B、2C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的解析式.
(1)已知二次函數(shù)f(x)滿足f(0)=0,且f(x+1)-f(x)=4x,求f(x)的解析式.
(2)已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x3+2x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間(0,10)中隨機(jī)地取出兩個(gè)數(shù)x和y,求兩數(shù)之和小于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)fa(x)=ln(1+ax)-x,(a>0,x>-
1
a
)的最大值可記為g(a)
(Ⅰ)求關(guān)于a的函數(shù)g(a)的解析式;
(Ⅱ)已知t∈N*,當(dāng)a≥t時(shí),g(a)≤2fa(1)+lnt恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6.
(1)求AB的長(zhǎng);
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax(a>0,a≠1),數(shù)列{bn}的前n項(xiàng)和Sn滿足f(n)=1+(1-
1
a
)Sn,數(shù)列{cn}有cn=bn•lgbn
(1)求數(shù)列{cn}的前n項(xiàng)和Tn;
(2)若對(duì)一切n∈N*都有cn<cn+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)矩陣M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對(duì)應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x|3m-1<x<2m},B={x|-1<x<3},若B?∁UA,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案