討論方程-|-x+3|+2=a根的情況.
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:討論a的范圍,結(jié)合絕對值函數(shù)的圖象和性質(zhì),利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:函數(shù)y=-|-x+3|+2=|x+3|+2=
x+5,x≥-3
-x-1,x<-3
,
對應(yīng)的圖象的圖象如圖:
若a<2,則兩個函數(shù)圖象無解,方程根的個數(shù)為0個,
若a=2,則兩個函數(shù)圖象有一個交點,方程根的個數(shù)為1個,
若a>2,則兩個函數(shù)圖象有兩個交點,方程根的個數(shù)為2個.
點評:本題主要考查方程根的個數(shù)的判斷,根據(jù)絕對值的圖象和性質(zhì),利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若奇函數(shù)f(x)在R上為增函數(shù),a、b、c∈R,則“a+b>0,b+c>0,c+a>0”是“f(a)+f(b)+f(c)>0”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x)具有下列性質(zhì):①f(-x)-f(x)=0;②f(x+1)•f(x)=1;③y=f(x)在[0,1]上為增函數(shù),則對于下述命題:
①y=f(x)為周期函數(shù)且最小正周期為4;
②y=f(x)的圖象關(guān)于y軸對稱且對稱軸只有1條;
③y=f(x)在[3,4]上為減函數(shù).
正確命題的個數(shù)為(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi),復數(shù)z=
1
1-i
+i7對應(yīng)的點位于( 。
A、第四象限B、第三象限
C、第二象限D、第一象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)經(jīng)過點P(
3
2
,1),離心率e=
3
2
,直線l與橢圓交于A(x1,y1),B(x2,y2)兩點,向量
m
=(ax1,by1),
n
=(ax2,by2),且
m
n

(Ⅰ)求橢圓的方程;
(Ⅱ)當直線l過橢圓的焦點F(0,c)(c為半焦距)時,求直線l的斜率k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(-5,0),點Q是圓(x-5)2+y2=36上的點,M是線段PQ的中點.
(Ⅰ)求點M的軌跡C的方程.
(Ⅱ)過點P的直線l和軌跡C有兩個交點A、B(A、B不重合),①若|AB|=4,求直線l的方程.②求
PA
PB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用適當?shù)姆椒ū硎静坏仁?x-5<3的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐P-ABCD的底面是矩形,側(cè)面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中點,AC與BD的交點為M.
(1)求證:PC∥平面EBD;
(2)求證:平面BED⊥平面AED.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+|x|;
(2)f(x)=x2+x+1.

查看答案和解析>>

同步練習冊答案