已知集合A={x|4≤x<8},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;  
(2)若A∩C≠∅,求a的取值范圍.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算,交集及其運(yùn)算
專題:集合
分析:根據(jù)集合的交集、并集、補(bǔ)集的運(yùn)算求解即可.
解答: 解:因?yàn)榧螦={x|4≤x<8},所以(∁RA)={x|x<4或x≥8},
所以(∁RA)∩B={x|2<x<4或x≤8<10};
(2)因?yàn)榧螦={x|4≤x<8},C={x|x<a},A∩C≠∅,
所以a>4.
點(diǎn)評:本題主要考查集合的交、并、補(bǔ)集的運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
x-5
x+5
(a>0且a≠1).
(1)判定f(x)在x∈(-∞,-5)上的單調(diào)性,并證明;
(2)設(shè)g(x)=1+loga(x-3),若方程f(x)=g(x)有實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩地相距skm,汽車從甲地勻速行駛到乙地,速度不得超過ckm/h,已知汽車每小時的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(單位km/h)的平方成正比,且比例系數(shù)為b;固定部分為a元(a<bc2),為了使全程運(yùn)輸成本最小,汽車應(yīng)該以多大行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,數(shù)列{bn}滿足bn=
1
n
(lga1+lga2+…+lgan)(n∈N*),記Sn=(b1+b2+…+bn)(n∈N*
(1)若數(shù)列{an}的首項(xiàng)a1=10,公比q=100,求數(shù)列{bn}的通項(xiàng)公式;
(2)在(1)的條件下,求Sn的最大值;
(3)是否存在實(shí)數(shù)k,使得
1
lga1lga2
+
1
lga2lga3
+…+
1
lgan-1lgan
=+
n+k
lga1lgan
對于任意的正整數(shù)n恒成立?若存在,請求出實(shí)數(shù)k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2分別為C的左右焦點(diǎn),|F1F2|=2
3
,∠F1MF2=60°,△F1MF2的面積為
3
3

(1)求橢圓C的方程;
(2)設(shè)過橢圓右焦點(diǎn)F2的直線l和橢圓交于兩點(diǎn)A,B,是否存在直線l,使得△OAF2與△OBF2的面積比值為2?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+(2-a)x-lnx.
(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)a>1,若f(x)在區(qū)間[
1
a
,1]內(nèi)的最大值為ln3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知如圖,四棱錐P-ABCD,它的底面是邊長為a的菱形,且∠ABC=120°.又PC⊥平面ABCD,PC=a.E為PA的中點(diǎn).
(Ⅰ)求證:平面EBD⊥平面ABCD:
(Ⅱ)求三棱錐VP-BED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)有甲乙兩個分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從甲乙兩個分廠生產(chǎn)的零件中各抽出500件,量其內(nèi)徑尺寸的結(jié)果如下表:
甲廠
分組[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
頻數(shù)1530125198773520
乙廠
分組[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
頻數(shù)407079162595535
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99.9%的把握認(rèn)為“生產(chǎn)的零件是否為優(yōu)質(zhì)品與在不同分廠生產(chǎn)有關(guān)”.
甲 廠    乙 廠  合計
優(yōu)質(zhì)品
非優(yōu)質(zhì)品
合計
附:Χ2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

P(Χ2≥k)0.100    0.050    0.025    0.010     0.001
k 2.706    3.841    5.024     6.635    10.828
(Ⅱ)現(xiàn)用分層抽樣方法(按優(yōu)質(zhì)品和非優(yōu)質(zhì)品分二層)從乙廠抽取五件零件,求從這五件零件中任意取出兩件,至少有一件非優(yōu)質(zhì)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x+y≥0
x-y≥0
3x+y-4≤0
,則4x+y的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案