1.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E,F(xiàn)分別是A1C1,BC的中點(diǎn).
(1)證明:C1F∥平面ABE;
(2)設(shè)P是BE的中點(diǎn),求三棱錐P-B1C1F的體積.

分析 (1)根據(jù)線(xiàn)面平行的判定定理即可證明:C1F∥平面ABE;
(2)根據(jù)三棱錐的體積公式即可求三棱錐P-B1C1F的體積.

解答 (1)證明:取AC的中點(diǎn)M,連接C1M,F(xiàn)M,
在△ABC中,F(xiàn)M∥AB,
而FM?面ABE,∴FM∥平面ABE,
在矩形ACC1A1中,E,M都是中點(diǎn),
∴C1M∥AE,
而C1M?平面ABE,∴C1M∥平面ABE,
∵C1M∩FM=M,
∴平面FC1M?平面ABE
∵C1F?平面FC1M,
∴C1F∥平面ABE,
(2)取B1C1的中點(diǎn)H,連接EH,
則EH∥AB,且EH=$\frac{1}{2}$AB=$\sqrt{3}$FM,
∵AB⊥平面BB1C1C,
∴EH⊥平面BB1C1C,
∵P是BE的中點(diǎn),
∴${V}_{P-{B}_{1}{C}_{1}F}=\frac{1}{2}{V}_{E-{B}_{1}{C}_{1}F}$=$\frac{1}{2}×\frac{1}{3}•{S}_{△{B}_{1}{C}_{1}F}•EH$=$\frac{1}{2}×\frac{1}{3}×2×\sqrt{3}=\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題主要考查線(xiàn)面平行的判定以及空間幾何體的體積的計(jì)算,根據(jù)相應(yīng)的判定定理以及三棱錐的體積公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知點(diǎn)O是四邊形ABCD所在平面外任意一點(diǎn),且$\overrightarrow{OD}$=2$\overrightarrow{OA}$+x$\overrightarrow{OB}$-y$\overrightarrow{OC}$(x,y∈R),則x2+y2的最小值為( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}中,a1=1,a2=2,an+2=an+1-an,試寫(xiě)出a3,a4,a5,a6,a7,a8,你發(fā)現(xiàn)數(shù)列{an}具有怎樣的規(guī)律?你能否求出該數(shù)列中的第2014項(xiàng)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若正數(shù)a,b滿(mǎn)足log2a=log5b=1g(a+b),則$\frac{1}{a}$$+\frac{1}$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.方程3x+3-x=2的解集是{0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線(xiàn)C:$\frac{x^2}{a}$-$\frac{y^2}{4}$=1(a>0)的離心率為$\frac{\sqrt{13}}{3}$,右焦點(diǎn)為F,點(diǎn)F在漸近線(xiàn)上的射影為M,O為坐標(biāo)原點(diǎn),則$\overrightarrow{OF}$•$\overrightarrow{MF}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|x2-x-2≤0,x∈R},B={x|lg(x+1)<1,x∈Z},則A∩B=( 。
A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某同學(xué)在研究函數(shù)f(x)=$\frac{x}{1+|x|}$(x∈R)時(shí),得到一下四個(gè)結(jié)論:
①f(x)的值域是(-1,1);
②對(duì)任意x∈R,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;
③若規(guī)定f1(x)=f(x),fn+1(x)=f(fn(x)),則對(duì)任意的n∈N*,fn(x)=$\frac{x}{1+n|x|}$;
④對(duì)任意的x∈[-1,1],若函數(shù)f(x)≤t2-2at+$\frac{1}{2}$恒成立,則當(dāng)a∈[-1,1]時(shí),t≤-2或t≥2,
其中正確的結(jié)論是①②③(寫(xiě)出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={x|x≥4},B={x|-1≤2x-1≤0},則∁RA∩B=( 。
A.(4,+∞)B.[0,$\frac{1}{2}$]C.($\frac{1}{2}$,4)D.(1,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案