19.向量$\overrightarrow{e_1},\;\overrightarrow{e_2},\;\overrightarrow a,\;\overrightarrow b$在正方形網(wǎng)格中的位置如圖所示,若$\overrightarrow a-\overrightarrow b=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,則x=1,y=-3.

分析 結(jié)合圖形,根據(jù)向量加法和數(shù)乘的幾何意義便可用$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$表示出$\overrightarrow{a},\overrightarrow$,然后進(jìn)行向量的數(shù)乘運(yùn)算即可得出$\overrightarrow{a}-\overrightarrow=\overrightarrow{{e}_{1}}-3\overrightarrow{{e}_{2}}$,這樣根據(jù)平面向量基本定理即可求出x,y的值.

解答 解:根據(jù)圖形得:$\overrightarrow{a}=-\overrightarrow{{e}_{1}}-4\overrightarrow{{e}_{2}},\overrightarrow=-2\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}}$;
∴$\overrightarrow{a}-\overrightarrow=\overrightarrow{{e}_{1}}-3\overrightarrow{{e}_{2}}$;
又$\overrightarrow{a}-\overrightarrow=x\overrightarrow{{e}_{1}}+y\overrightarrow{{e}_{2}}$;
∴x=1,y=-3.
故答案為:1,-3.

點(diǎn)評(píng) 考查向量加法和數(shù)乘的幾何意義,以及向量的數(shù)乘運(yùn)算,平面向量基本定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$離心率為$\frac{{\sqrt{2}}}{2}$,點(diǎn)P(0,1)在短軸CD上,且$\overrightarrow{PC}•\overrightarrow{PD}=-1$.
(I)求橢圓E的方程;
(Ⅱ)過點(diǎn)P的直線l與橢圓E交于A,B兩點(diǎn).
(i)若$\overrightarrow{PB}=\frac{1}{2}\overrightarrow{AP}$,求直線l的方程;
(ii)在y軸上是否存在與點(diǎn)P不同的定點(diǎn)Q,使得$\frac{{\left|{QA}\right|}}{{\left|{QB}\right|}}=\frac{{\left|{PA}\right|}}{{\left|{PB}\right|}}$恒成立,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列語句是真命題的是(  )
A.x>1B.若a>b,則a2>ab
C.y=sinx是奇函數(shù)嗎?D.若a-2是無理數(shù),則a是無理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2x,x∈(0,2)的值域?yàn)锳,函數(shù)g(x)=log2(x-2a)+$\sqrt{a+1-x}$(a<1)的定義域?yàn)锽.
(Ⅰ)求集合A,B;
(Ⅱ)若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\sqrt{3}sinxcosx-{cos^2}x+\frac{1}{2}\;(x∈R)$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,再向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得g(x)的圖象,求函數(shù)y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題p:?x∈R,x2-x-2≥0,那么命題?p為( 。
A.?x∈R,x2-x-2≤0B.?x∈R,x2-x-2<0C.?x∈R,x2-x-2≤0D.?x∈R,x2-x-2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={1,2},B={2,3,4},那么集合A∩B等于( 。
A.{2}B.{2,3}C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在等腰直角三角形ABC中,AB=AC=$\sqrt{2}$,D,E是線段BC上的點(diǎn),且DE=$\frac{1}{3}$BC,則$\overrightarrow{AD}$•$\overrightarrow{AE}$的取值范圍是( 。
A.$[{\frac{8}{9},\;\frac{4}{3}}]$B.$[{\frac{4}{3},\;\frac{8}{3}}]$C.$[{\frac{8}{9},\;\frac{8}{3}}]$D.$[{\frac{4}{3},\;+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=x-alnx在區(qū)間(0,2]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(  )
A.(0,$\frac{1}{2}$)B.(0,2)C.($\frac{1}{2}$,+∞)D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案