8.如圖,在等腰直角三角形ABC中,AB=AC=$\sqrt{2}$,D,E是線段BC上的點(diǎn),且DE=$\frac{1}{3}$BC,則$\overrightarrow{AD}$•$\overrightarrow{AE}$的取值范圍是( 。
A.$[{\frac{8}{9},\;\frac{4}{3}}]$B.$[{\frac{4}{3},\;\frac{8}{3}}]$C.$[{\frac{8}{9},\;\frac{8}{3}}]$D.$[{\frac{4}{3},\;+∞})$

分析 建立平面直角坐標(biāo)系,設(shè)D(x,0)則E(x+$\frac{2}{3}$,0),則$\overrightarrow{AD}•\overrightarrow{AE}$可表示為關(guān)于x的函數(shù),根據(jù)x的范圍求出函數(shù)的值域.

解答 解以BC所在直線為x軸,以BC的中垂線為y軸建立平面直角坐標(biāo)系,
則A(0,1),B(-1,0),C(1,0),設(shè)D(x,0),則E(x+$\frac{2}{3}$,0),-1≤x≤$\frac{1}{3}$.
∴$\overrightarrow{AD}$=(x,-1),$\overrightarrow{AE}$=(x+$\frac{2}{3}$,-1),∴$\overrightarrow{AD}•\overrightarrow{AE}$=x2+$\frac{2}{3}$x+1=(x+$\frac{1}{3}$)2+$\frac{8}{9}$.
∴當(dāng)x=-$\frac{1}{3}$時(shí),$\overrightarrow{AD}•\overrightarrow{AE}$取得最小值$\frac{8}{9}$,當(dāng)x=-1或$\frac{1}{3}$時(shí),$\overrightarrow{AD}•\overrightarrow{AE}$取得最大值$\frac{4}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,建立坐標(biāo)系是常用解題方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)是奇函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=$\frac{x}{1-x}$.
(1)求f(1)的值;
(2)求函數(shù)f(x)在(0,+∞)上的解析式;
(3)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.向量$\overrightarrow{e_1},\;\overrightarrow{e_2},\;\overrightarrow a,\;\overrightarrow b$在正方形網(wǎng)格中的位置如圖所示,若$\overrightarrow a-\overrightarrow b=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,則x=1,y=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=ax2+bx+c的圖象關(guān)于y軸對(duì)稱,則f(x)=kx+b的圖象關(guān)于原點(diǎn)對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在平面直角坐標(biāo)系中,定義點(diǎn)P(x1,y1)與Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|.某市有3個(gè)特色小鎮(zhèn),在直角坐標(biāo)系中的坐標(biāo)分別為A(2,3),B(-6,9),C(-3,-8),現(xiàn)該市打算建造一個(gè)物流中心,如果該中心到3個(gè)特色小鎮(zhèn)的直角距離相等,則物流中心對(duì)應(yīng)的坐標(biāo)為(-5,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“?x∈R,x2-5x+1>0”的否定為(  )
A.?x∈R,x2-5x+1≤0B.?x∈R,x2-5x+1≤0C.?x∈R,x2-5x+1<0D.?x∈R,x2-5x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(x+1)ex和函數(shù)g(x)=(ex-a)(x-1)2(a>0)(e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)判斷函數(shù)g(x)的極值點(diǎn)的個(gè)數(shù),并說明理由;
(3)若函數(shù)g(x)存在極值為2a2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示為f(x)=Asin($\frac{π}{6}$x+φ)(A>0,0<φ<$\frac{π}{2}$)的部分圖象,P,Q分別為f(x)圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P坐標(biāo)為(2,A),PR⊥x軸于R,若∠PRQ=$\frac{2π}{3}$.則A及φ的值分別是( 。
A.$\sqrt{3}$,$\frac{π}{6}$B.$\sqrt{3}$,$\frac{π}{3}$C.2$\sqrt{3}$,$\frac{π}{6}$D.2$\sqrt{3}$,$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足an+1=2n-3an,n∈N*
(1)設(shè)bn=$\frac{{a}_{n}}{{2}_{n}}$,求數(shù)列{bn}的通項(xiàng)公式(用a1和n表示);
(2)求使得數(shù)列{an}單調(diào)遞增的所有a1的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案