8.雙曲線$\frac{x^2}{{64-{m^2}}}$-$\frac{y^2}{m^2}$=1(0<m<5)的焦距為16.

分析 直接利用雙曲線的方程,求出焦距即可.

解答 解:雙曲線$\frac{x^2}{{64-{m^2}}}$-$\frac{y^2}{m^2}$=1(0<m<5),a2=64-m2,b2=m2,
可得c2=a2+b2=64-m2+m2=64,可得c=8,2c=16.
故答案為:16.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)命題P:函數(shù)f(x)=lg(x2-ax+$\frac{1}{16}$a)的定義域?yàn)镽;命題q:不等式3x-9x<a對一切實(shí)數(shù)x均成立,如果命題p和q都是假命題,則實(shí)數(shù)a的取值范圍為a≤0或a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知 sinα=$\frac{3}{5}$,且α是第二象限角,求 cosα,tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.C73+C74+C85-C95=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若f(x)是定義在R上的單調(diào)遞減函數(shù),且$\frac{f(x)}{f′(x)}$+x<1,則下列結(jié)論正確的是( 。
A.f(x)<0B.當(dāng)且僅當(dāng)x<1時(shí),f(x)<0
C.f(x)>0D.當(dāng)且僅當(dāng)x≥1時(shí),f(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知p:A={x||x-a|<4},q:B={x|(x-2)(3-x)>0},若¬p是¬q的充分條件,則實(shí)數(shù)a的取值范圍為( 。
A.-1<a<6B.a≤-1或a≥6C.a<-1或a>6D.-1≤a≤6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a為實(shí)數(shù),記函數(shù)f(x)=ax-ax3(x∈[$\frac{1}{2}$,1])的圖象為C,如果任何斜率不小于1的直線與C都至多有一個(gè)公共點(diǎn),則a的取值范圍是[-$\frac{1}{2}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若C28x=C282x-1,則x的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$•$\overrightarrow{a}$=$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$=1,則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|的最小值為( 。
A.2B.4C.$\sqrt{14}$D.16

查看答案和解析>>

同步練習(xí)冊答案