【題目】已知橢圓E:,點(diǎn)A,B分別是橢圓E的左頂點(diǎn)和上頂點(diǎn),直線AB與圓C:x2+y2=c2相離,其中c是橢圓的半焦距,P是直線AB上一動點(diǎn),過點(diǎn)P作圓C的兩條切線,切點(diǎn)分別為M,N,若存在點(diǎn)P使得△PMN是等腰直角三角形,則橢圓離心率平方e2的取值范圍是_____.
【答案】[,).
【解析】
根據(jù)直線和圓相離得到a2b2>c2(a2+b2),根據(jù)等腰三角形得到2e4﹣5e2+1≤0,計(jì)算得到答案.
AB所在直線方程為,即bx﹣ay+ab=0,
又直線AB與圓C:x2+y2=c2相離,∴c,
即a2b2>c2(a2+b2),∴a2(a2﹣c2)>c2(2a2﹣c2),
整理得:e4﹣3e2+1>0,解得0<e2;
又存在點(diǎn)P使得△PMN是等腰直角三角形,
則在Rt△OPN中,OPONc,
∴,即a2b2≤2c2(a2+b2),
∴a2(a2﹣c2)≤2c2(2a2﹣c2),
整理得2e4﹣5e2+1≤0,解得e2<1.
∴e2的取值范圍是[,).
故答案為:[,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年福建省高考實(shí)行“”模式.“”模式是指:“3”為全國統(tǒng)考科目語文、數(shù)學(xué)、外語,所有學(xué)生必考;“1”為首選科目,考生須在高中學(xué)業(yè)水平考試的物理、歷史科目中選擇1科;“2”為再選科目,考生可在化學(xué)、生物、政治、地理4個(gè)科目中選擇2科,共計(jì)6個(gè)考試科目.
(1)若學(xué)生甲在“1”中選物理,在“2”中任選2科,求學(xué)生甲選化學(xué)和生物的概率;
(2)若學(xué)生乙在“1”中任選1科,在“2”中任選2科,求學(xué)生乙不選政治但選生物的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的坐標(biāo)為,若點(diǎn)是曲線截直線所得線段的中點(diǎn),求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有限數(shù)列同時(shí)滿足下列兩個(gè)條件:
①對于任意的(),;
②對于任意的(),,,三個(gè)數(shù)中至少有一個(gè)數(shù)是數(shù)列中的項(xiàng).[來
(1)若,且,,,,求的值;
(2)證明:不可能是數(shù)列中的項(xiàng);
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是( )
A.命題“若⊥,則0”的否命題為“若⊥,則0”
B.命題“函數(shù)f(x)=(a﹣1)x是R上的增函數(shù)”的否定是“函數(shù)f(x)=(a﹣1)x是R上的減函數(shù)”
C.命題“在△ABC中,若sinA=sinB,則A=B”的逆否命題為真命題
D.命題“若x=2,則x2﹣3x+2=0”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,過動點(diǎn)M(0,m)的直線交x軸于點(diǎn)N,交橢圓C于A,P(其中P在第一象限,N在橢圓內(nèi)),且M是線段PN的中點(diǎn),點(diǎn)P關(guān)于x軸的對稱點(diǎn)為Q,延長QM交C于點(diǎn)B,記直線PM,QM的斜率分別為k1,k2.
(1)當(dāng)時(shí),求k2的值;
(2)當(dāng)時(shí),求直線AB斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn)x1,x2,且x1<x2.
(1)求實(shí)數(shù)a的取值范圍;
(2)求證:x1x2<a2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線Cn:x2﹣2nx+y2=0,(n=1,2,…).從點(diǎn)P(﹣1,0)向曲線Cn引斜率為kn(kn>0)的切線ln,切點(diǎn)為Pn(xn,yn).
(1)求數(shù)列{xn}與{yn}的通項(xiàng)公式;
(2)證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com