16.若$sinα=-\frac{5}{13},且α$為第四象限角,則$tan({α+\frac{π}{4}})$的值等于(  )
A.$\frac{7}{17}$B.$\frac{17}{7}$C.$-\frac{5}{12}$D.$\frac{10}{17}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,tanα的值,根據(jù)兩角和的正切函數(shù)公式及特殊角的三角函數(shù)值即可求解.

解答 解:∵$sinα=-\frac{5}{13},且α$為第四象限角,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{12}{13}$,tan$α=\frac{sinα}{cosα}$=-$\frac{5}{12}$,
∴$tan({α+\frac{π}{4}})$=$\frac{1+tanα}{1-tanα}$=$\frac{1-\frac{5}{12}}{1+\frac{5}{12}}$=$\frac{7}{17}$.
故選:A.

點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正切函數(shù)公式及特殊角的三角函數(shù)值的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(1-2x,2),$\overrightarrow$=(2,-1),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,(-1≤x≤1)}\\{x-1,(x≥1)}\end{array}\right.$.
(1)求f(f(0))的值;
(2)在給出坐標(biāo)系中畫出函數(shù)f(x)的大致圖象(只畫圖象不寫過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)=3x+4,若|f(x)-1|<a的必要條件是|x+1|<b(a,b>0),則a,b之間的關(guān)系是(  )
A.$a>\frac{3}$B.$b<\frac{a}{3}$C.$a≤\frac{3}$D.$b≥\frac{a}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\overrightarrow a=(5,6),\overrightarrow b=(sinα,cosα)$,且$\overrightarrow a∥\overrightarrow b$,則tanα=( 。
A.$-\frac{5}{6}$B.$-\frac{6}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)y=f(x)與y=($\frac{1}{2}$)x的圖象關(guān)于直線y=x對稱,則f(x2-2x-3)的單調(diào)遞增區(qū)間為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).若橢圓上存在點(diǎn)P,使$\frac{{P{F_1}}}{{2P{F_2}}}=\frac{a}{c}$;則該橢圓離心率的范圍是$[\frac{{-3+\sqrt{17}}}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定義在R上的奇函數(shù)f(x),當(dāng)x∈(0,+∞)時的解析式為f(x)=-x2+4x-3.
(1)求這個函數(shù)在R上的解析式;
(2)作出f(x)的圖象,并根據(jù)圖象直接寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.當(dāng)x∈[0,2π]時,使得不等式cosx≥$\frac{\sqrt{2}}{2}$成立的x的取值范圍是( 。
A.[$\frac{π}{4}$,2π]B.[0,$\frac{π}{4}$]C.[-$\frac{π}{4}$,$\frac{π}{4}$]D.[0,$\frac{π}{4}$]∪[$\frac{7π}{4}$,2π]

查看答案和解析>>

同步練習(xí)冊答案