8.已知定義在實數(shù)集R上的函數(shù)y=f(x),滿足f(2+x)=f(2-x),證明:函數(shù)y=f(x)的圖象關(guān)于直線x=2對稱.

分析 先在f(x)上任取一點(x,f(x)),根據(jù)軸對稱求出關(guān)于直線x=2對稱的點的坐標為(4-x,f(x)),只要證明點(4-x,f(x))在y=f(x)上即可.

解答 證明:在f(x)上任取一點(x,f(x)),
則此點關(guān)于直線x=2對稱的點的坐標為(4-x,f(x)),現(xiàn)在只要證明點(4-x,f(x))在y=f(x)上即可,
因為f(2+x)=f(2-x)
所以f(4-x)=f(2+(2-x))=f(2-(2-x))=f(x)
即,f(4-x)=f(x)
因此點(4-x,f(x))在y=f(x)上.
故函數(shù)y=f(x)的圖象關(guān)于直線x=2對稱.

點評 考查了軸對稱和點在圖象上的證明.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知A=30°,B=45°,a=$\sqrt{2}$.
(1)求b的長;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lg($\frac{2}{x+1}$-1).
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知α為第三象限角,且$\sqrt{\frac{1-sinα}{1+sinα}}$+$\frac{1}{cosα}$=2,則$\frac{sinα-cosα}{sinα+2cosα}$的值為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若log${\;}_{\sqrt{x+1}}$(x2+x)有意義,則x∈(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若(3x-1)6=a0+a1x+a2x2+…+a5x5+a6x6,則a1+a2+a3+a4+a5+a6=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已$\overrightarrow{a}$,$\overrightarrow$為平面內(nèi)兩個互相垂直的單位向量,若向量$\overrightarrow{c}$滿足$\overrightarrow{c}$+$\overrightarrow{a}$=λ($\overrightarrow{c}$+$\overrightarrow$)(λ∈R),則|$\overrightarrow{c}$|的最小值為( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}的前4項為-$\frac{1}{2}$,$\frac{3}{5}$,-$\frac{3}{5}$,$\frac{10}{17}$,則數(shù)列{an}的一個通項公式是an=(-1)n$\frac{n(n+1)}{2({n}^{2}+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=-(-1+2cos2x)sin2x,若f($\frac{α}{4}$)=-$\frac{2}{5}$,α∈($\frac{π}{2}$,π),求sin(α+$\frac{π}{3}$)的值.

查看答案和解析>>

同步練習冊答案