3.有一種細(xì)胞每半小時(shí)分裂一次,由原來的一個(gè)分裂成兩個(gè),那么一個(gè)這種細(xì)胞經(jīng)過3小時(shí)分裂成的細(xì)胞數(shù)為(  )
A.32B.64C.128D.254

分析 根據(jù)題意,建立該種細(xì)菌分裂的個(gè)數(shù)的數(shù)學(xué)模型,求出經(jīng)過3小時(shí),細(xì)菌分裂6次的細(xì)菌個(gè)數(shù)即可.

解答 解:根據(jù)題意知,該種細(xì)菌分裂的個(gè)數(shù)滿足等比數(shù)列an=2n,n∈N*;
經(jīng)過3小時(shí),細(xì)菌分裂6次,n=6;
細(xì)菌分裂的個(gè)數(shù)為a6=26=64.
故選:B.

點(diǎn)評 本題考查了等比數(shù)列的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)題意,建立數(shù)學(xué)模型,利用數(shù)學(xué)知識解答實(shí)際問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在四面體ABCD中,若E、F、H、I、J、K分別是棱AB、CD、AD、BC、AC、BD的中點(diǎn),則EF、HI、JK相交于一點(diǎn)G,則點(diǎn)G為四面體ABCD的重心.設(shè)A(0,0,2),B(2,0,0),C(0,3,0),D(2,3,2).
(I)重心G的坐標(biāo)為$(1,\frac{3}{2},1)$;
(II)若△BCD的重心為M,則$\frac{|\overrightarrow{AG}|}{|\overrightarrow{GM|}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若三次方程ax3+bx2+cx+d=0的三個(gè)不同實(shí)根x1,x2,x3滿足;x1+x2+x3=0,x1x2x3=0,則下列關(guān)系式中恒成立的是( 。
A.ac=0B.ac<0C.ac>0D.a+c>0
E.a+c<0         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若橢圓$\frac{x^2}{4}+{y^2}$=1上一點(diǎn)到左焦點(diǎn)的距離為1,則該點(diǎn)到右焦點(diǎn)的距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(n)=n2sin$\frac{nπ}{2}({n∈{N^*}}$),且an=f(n)+f(n+1),則a1+a2+a3+…+a2016的值為4023.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等比數(shù)列{an}各項(xiàng)都為正數(shù),且滿足a2=2,a6=6,a4=( 。
A.4B.8C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a<0,函數(shù)f(x)=ax2+bx+c,若x0滿足2ax+b=0,則下列必為真命題的是(  )
A.?x∈R,f(x)>f(x0B.?x∈R,f(x-1)≥f(x0C.?x∈R,f(x)≤f(x0D.?x∈R,f(x+1)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=4,an+2an+1=6,則a4=$\frac{7}{4}$.

查看答案和解析>>

同步練習(xí)冊答案