13.四棱錐P-ABCD的底面ABCD為正方形,PA⊥底面ABCD,AB=2,若該四棱錐的所有頂點都在同一球面上,且該球的表面積為$\frac{81π}{4}$,則該棱錐的高為( 。
A.$\frac{7}{2}$B.$\frac{7}{4}$C.2$\sqrt{2}$D.$\sqrt{2}$

分析 利用條件確定球的直徑,利用勾股定理,即可求棱錐的高.

解答 解:可以將四棱錐P-ABCD補成球的內(nèi)接長方體,其對角線PC即為球的直徑.
∵球的表面積為$\frac{81π}{4}$,
∴球的半徑為$\frac{9}{4}$,
設PA=x,則PC的長等于$\sqrt{4+4+{x}^{2}}$=$\frac{81}{4}$,即x=$\frac{7}{2}$.
故選:A.

點評 本題主要考查球的表面積公式,構造長方體是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.某商品銷量q與售價p滿足q=10-λp,總成本c與銷量滿足c=4+μq,銷售收入r與售價及銷量之間滿足r=pq,其中λ,μ均為正常數(shù),設利潤=銷售收入-總成本,則利潤最大時的售價為( 。
A.$\frac{10-λμ}{λ}$B.$\frac{10+λμ}{λ}$C.$\frac{10-λμ}{2λ}$D.$\frac{10+λμ}{2λ}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f1(x)=$\frac{lg(1-{x}^{2})}{|{x}^{2}-2|-2}$;f2(x)=(x-1)•$\sqrt{\frac{x+1}{x-1}}$;f3(x)=loga(x+$\sqrt{{x}^{2}+1}$),(a>0,a≠1);f4(x)=x•($\frac{1}{{2}^{x}-1}+\frac{1}{2}$),(x≠0),下面關于這四個函數(shù)奇偶性的判斷正確的是( 。
A.都是偶函數(shù)
B.一個奇函數(shù),一個偶函數(shù),兩個非奇非偶函數(shù)
C.一個奇函數(shù),兩個偶函數(shù),一個非奇非偶函數(shù)
D.一個奇函數(shù),三個偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2、a4的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=anlog2an,Sn=b1+b2+…+bn,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖所示,在海島A上有一座海拔$\sqrt{3}$千米的山峰上,山頂上設有一座觀察站P,一艘輪船沿一固定方向勻速航行,上午10:00時,測得此船在島北偏東20°且俯角為30°的B處,到10:10時,又測得該船在島北偏西40°且俯角為60°的C處,則該船的航行速度為$6\sqrt{7}$千米/時.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列函數(shù)中,在其定義域內(nèi)是增函數(shù)而且又是奇函數(shù)的是( 。
A.y=2xB.y=2|x|C.y=2x-2-xD.y=2x+2-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.(x3+2x+1)(3x2+4)展開后各項系數(shù)的和等于28.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.二項式(2x-$\frac{1}{2x}$)n(n∈N*)的展開式中,二項式系數(shù)最大的項是第4項,則其展開式中的常數(shù)項是-20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設數(shù)列{an}共有m(m≥3)項,記該數(shù)列前i項a1,a2,…ai中的最大項為Ai,該數(shù)列后m-i項ai+1,ai+2,…,am中的最小項為Bi,ri=Ai-Bi(i=1,2,3,…,m-1).
(1)若數(shù)列{an}的通項公式為an=2n,求數(shù)列{ri}的通項公式;
(2)若數(shù)列{an}滿足a1=1,ri=-2,求數(shù)列{an}的通項公式;
(3)試構造一個數(shù)列{an},滿足an=bn+cn,其中{bn}是公差不為零的等差數(shù)列,{cn}是等比數(shù)列,使得對于任意給定的正整數(shù)m,數(shù)列{ri}都是單調(diào)遞增的,并說明理由.

查看答案和解析>>

同步練習冊答案