13.已知拋物線E:y2=2px(p>0)的焦點F恰好與圓C:x2+y2-2x=0的圓心重合,過焦點F的直線l與拋物線E交于不同的兩點A,B.
(Ⅰ)求拋物線E的方程;
(Ⅱ)若O是坐標原點,試問$\overrightarrow{OA}$•$\overrightarrow{OB}$是否為一定值?若是定值,請求出,否則請說明理由.

分析 (Ⅰ)由拋物線E:y2=2px(p>0)的焦點F恰好與圓C:x2+y2-2x=0的圓心重合,即可得出結(jié)論;
(Ⅱ)進行一定的分類討論,討論直線的斜率是否存在,將直線方程與拋物線方程進行聯(lián)立,即可得出定值.

解答 解:(Ⅰ)∵圓C:x2+y2-2x=0的圓心為C(1,0),且拋物線E:y2=2px(p>0)的焦點F恰好與圓C:x2+y2-2x=0的圓心重合,
∴拋物線E:y2=2px(p>0)的焦點F為(1,0),
∴$\frac{p}{2}$=1,∴p=2,
∴拋物線E的方程為:y2=4x;
(Ⅱ)是定值-3.
由(Ⅰ)得,拋物線E的焦點F(1,0),設A($\frac{{{y}_{1}}^{2}}{4}$,y1),B($\frac{{{y}_{2}}^{2}}{4}$,y2),
①當過F的直線l的斜率不存在時,l垂直與x軸,則l的方程為x=1,
∴A(1,2),B(1,-2),∴$\stackrel{→}{OA}$•$\stackrel{→}{OB}$=1-4=-3,
②當過F的直線的斜率存在時,設斜率為k,則l的方程為y=k(x-1),
由題意得,k≠0,∴x=$\frac{y}{k}$+1,代入y2=4x,得y2-$\frac{4}{k}$y-4=0,
∴y1+y2=$\frac{4}{k}$,y1y2=-4,
∴$\stackrel{→}{OA}$•$\stackrel{→}{OB}$=($\frac{{{y}_{1}}^{2}}{4}$,y1)•($\frac{{{y}_{2}}^{2}}{4}$,y2)=$\frac{{{y}_{1}}^{2}{{y}_{2}}^{2}}{16}$+y1y2=1-4=-3,
綜上,$\stackrel{→}{OA}$•$\stackrel{→}{OB}$為定值-3.

點評 本題考查方程的求法,考查拋物線與直線相結(jié)合的綜合,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.要從n名學生組成的小組中任意選派3人去參加社會實踐活動,若在男生甲被選中的情況下,女生乙也被選中的概率為0.25,則n的值為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,正視圖、側(cè)視圖和俯視圖都是等腰直角三角形,則該幾何體的體積為(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=3sin(ωx+φ+$\frac{π}{4}$)(ω>0,|φ|<$\frac{π}{2}$)的相鄰對稱軸之間的距離為$\frac{π}{2}$,且滿足f(-x)=f(x),則(  )
A.f(x)在(0,$\frac{π}{2}$)上單調(diào)遞增B.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)上單調(diào)遞減
C.f(x)在(0,$\frac{π}{2}$)上單調(diào)遞減D.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如果sin(x+$\frac{π}{2}$)=$\frac{1}{2}$,則cos(-x)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.為慶祝冬奧申辦成功,隨機調(diào)查了500名性別不同的大學生是否愛好某項冬季運動,提出假設H:“愛好這項運動與性別無關”,利用2×2列聯(lián)表計算的K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列表述中正確的是(  )
A.有95%的把握認為“愛好這項運動與性別有關”
B.有95%的把握認為“愛好這項運動與性別無關”
C.在犯錯誤的概率不超過0.5%的前提下,認為“愛好這項運動與性別有關”
D.在犯錯誤的概率不超過0.5%的前提下,認為“愛好這項運動與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和為Sn,滿足3an-2Sn-1=0.
(1)求數(shù)列{an}的通項公式;
(2)bn=$\frac{n(2{S}_{n}+1)}{{a}_{n}}$,數(shù)列{bn}的前n項和為Tn,求f(n)=$\frac{_{n}}{{T}_{n}+24}$(n∈N+)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某幾何體的三視圖如圖,則該幾何體的體積為( 。
A.7$\frac{1}{6}$B.7$\frac{1}{3}$C.7$\frac{1}{2}$D.7$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.過P(8,3)作雙曲線9x2-16y2=144的弦AB,且P為弦AB中點,那么直線AB的方程為3x-2y-18=0.

查看答案和解析>>

同步練習冊答案