分析 由題意通過等體積法,求出三棱錐的體積,然后求出D到平面ABC的距離
解答 解:由題意畫出圖形如圖:
∵直二面角α-l-β,點A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,
∴AC⊥β,BC?β,
∴AC⊥BC,
∵AB=2,AC=BD=1,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\sqrt{3}$,CD=$\sqrt{A{D}^{2}-A{C}^{2}}$=$\sqrt{2}$,BC=$\sqrt{B{D}^{2}+C{D}^{2}}$=$\sqrt{3}$
設(shè)D到平面ABC的距離轉(zhuǎn)化為三棱錐D-ABC的高為h,
由VB-ACD=VD-ABC可知$\frac{1}{3}$×$\frac{1}{2}$•AC•CD•BD=$\frac{1}{3}$×$\frac{1}{2}$×AC•BC•h,
所以,h=$\frac{\sqrt{6}}{3}$.
點評 本題是基礎(chǔ)題,考查點到平面的距離,考查轉(zhuǎn)化思想的應(yīng)用,等體積法是求解點到平面距離的基本方法之一,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}+1}{2}$ | B. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | C. | $\frac{2+\sqrt{3}}{4}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 綜合法 | B. | 分析法 | C. | 類比法 | D. | 歸納法 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{40}{3}$ | B. | $\frac{16}{3}$ | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com